Appendix F Geology Report

CITY OF LOS ANGELES INTER-DEPARTMENTAL CORRESPONDENCE

GEOLOGY AND SOILS REPORT APPROVAL LETTER

September 20, 2018

LOG # 103763-01 SOILS/GEOLOGY FILE - 2 LIQ

To: Vincent P. Bertoni, AICP, Deputy Advisory Agency c/o planning.expedited@lacity.org Department of City Planning 200 N. Spring Street, 7th Floor, Room 750

From: Jesus Adolfo Acosta, Grading Division Chief Department of Building and Safety

PROPOSED LEGAL: Vesting Tentative Tract Map VTT-82227, Lots 1 through 5 CURRENT LEGAL: Lots 6, 7, 8, 9 and 10 of BROADWAY TRACT (MP 16-8) LOCATION: 942 N. Broadway

CURRENT REFERENCE REPORT/LETTER	REPORT <u>No.</u>	DATE OF DOCUMENT	PREPARED BY
Preliminary Soils Report	21545	07/24/2018	Geotechnologies, Inc.
PREVIOUS REFERENCE <u>REPORT/LETTER</u> Dept. Review Letter Soils Report	REPORT <u>No.</u> 103763 4953-17-1001	DATE OF <u>DOCUMENT</u> 06/25/2018 09/01/2017	<u>PREPARED BY</u> LADBS Amec Foster Wheeler

The Grading Division of the Department of Building and Safety has reviewed the revised map for Vesting Tentative Tract VTT-82227 with Los Angeles Department of City Planning stamp dated 07/24/2018 and the referenced reports that provide liquefaction analysis and preliminary recommendations for the proposed 32-story (27 above grade and 5 subterranean) mixed-use structure. The proposed structure is estimated to be 291 feet above ground and 60 feet below grade.

The earth materials at the subsurface exploration locations consist of up to 17.5 feet of uncertified fill underlain by alluvium and Puente Formation siltstone bedrock. The consultants recommend to support the proposed structures on mat-type and/or drilled-pile foundations bearing on non-liquefiable native undisturbed soils.

The site is located in a designated liquefaction hazard zone as shown on the Seismic Hazard Zones map issued by the State of California. According to the consultants, the soils between 50 to 60 feet (elevations 251 to 261 feet) are susceptible to liquefaction with potential settlement on the order of 2.9 inches. The consultants recommend to mitigate the liquefaction hazard by extending the foundations into the non-liquefiable soils and support the proposed structures on mat-type and/or drilled-pile foundations bearing on native undisturbed soils.

Page 2 942 N. Broadway

The Liquefaction study included as a part of the reports demonstrates that the site soils are subject to liquefaction. To mitigate the earthquake induced settlements it is proposed to use a mat or pile foundation. The requirements of the 2017 City of Los Angeles Building Code have been satisfied.

The Vesting Tentative Tract No. 82227 and the referenced reports are acceptable for evaluation and mitigation of the liquefaction hazard at the site and allow the Department of City Planning case to continue, provided the following conditions are complied with:

- 1. Prior to the issuance of any building or grading permits, a soils report, in accordance with P/BC 2017-113 Information Bulletin, providing design level geotechnical recommendations and calculations for the proposed grading/construction shall be submitted to the Grading Division for review and approval.
- 2. All foundations shall derive entire support from non-liquefiable native undisturbed soils below an elevation of 251 feet, as recommended.

AD CLJ/AD:cli/ad Log No. 103763-01

213-482-0480

cc: TF Broadway LP, Owner Alex Irvine, Jeff Allen, Applicant Geotechnologies, Inc., Project Consultant LA District Office

Geotechnologies. Inc.

Consulting Geotechnical Engineers

Glendale, California 91201-2837 818.240.9600 • Fax 818.240.9675

> September 14, 2018 File Number 21545

TF Broadway LP 11400 West Olympic Boulevard, Suite 850 Los Angeles, California 90064

Subject: Geotechnical Engineering Investigation Proposed Mixed-Use Development 942 North Broadway, Los Angeles, California

References: Reports by Geotechnologies, Inc: Preliminary Geotechnical Engineering Investigation, dated April 17, 2018; Environmental Impact Report, Soils and Geology Issues, dated July 20, 2018, updated July 24, 2018.

Ladies and Gentlemen:

This letter transmits the Geotechnical Engineering Investigation for the subject site prepared by Geotechnologies, Inc. This report provides geotechnical recommendations for the development of the site, including earthwork, seismic design, retaining walls, excavations, shoring and foundation design. Engineering for the proposed project should not begin until approval of the geotechnical investigation is granted by the local building official. Significant changes in the geotechnical recommendations may result due to the building department review process.

This report includes additional subsurface investigation and analysis to address the geotechnical issues identified in the previous report.

The validity of the recommendations presented herein is dependent upon review of the geotechnical aspects of the project during construction by this firm. The subsurface conditions described herein have been projected from limited subsurface exploration and laboratory testing. The exploration and testing presented in this report should in no way be construed to reflect any variations which may occur between the exploration locations or which may result from changes in subsurface conditions.

Should you have any questions please contact this office.

Respectfully submitted, GEOTECHNOLOGIES, INC. No. 2755 P. 12/31/1 **REINARD T. KNUR** G.E. 2755 RTK:km Distribution: (5) Addressee Email to: [damon@formedevelopment.com], Attn: Damon Chan [gglotman@glotmansimpson.com], Attn: Geoff Glotman [okeeffe@glotmansimpson.com], Attn: Michael Okeeffe

TABLE OF CONTENTS

SECTION

PAGE

INTRODUCTION	1
PROPOSED DEVELOPMENT	
SITE CONDITIONS	
Alameda Street Storm Drain	3
Zanja Madre	3
LOCAL GEOLOGY	
Local Faults	4
BACKGROUND RESEARCH	
GEOTECHNICAL EXPLORATION	
FIELD EXPLORATION	6
Geologic Materials	7
Groundwater	8
Caving	
LOS ANGELES CITY OIL FIELD AND OIL WELLS	10
METHANE ZONES	
SEISMIC EVALUATION	
REGIONAL GEOLOGIC SETTING	10
REGIONAL FAULTING	11
SEISMIC HAZARDS AND DESIGN CONSIDERATIONS	11
Surface Rupture	12
Liquefaction	12
CPT Analysis	14
Liquefaction Settlement	15
Surface Manifestation	16
Lateral Spreading	17
Dynamic Dry Settlement	18
Tsunamis, Seiches and Flooding	18
Landsliding	
CONCLUSIONS AND RECOMMENDATIONS	19
SEISMIC DESIGN CONSIDERATION	
2016 California Building Code Seismic Parameters	
FILL MATERIALS	
WATER-SOLUBLE SULFATES	
GRADING GUIDELINES	
Site Preparation	
Compaction	
Acceptable Materials	
Utility Trench Backfill	
Wet Soils	
Shrinkage	
Weather Related Grading Considerations	
Geotechnical Observations and Testing During Grading	
FOUNDATION DESIGN	28

TABLE OF CONTENTS

SECTION

PAGE

Lateral Design for Mat Foundation	. 29
Uplift Resistance	. 29
Mat Foundation Settlement	. 29
Foundation Observations	. 30
RETAINING WALL DESIGN	
Cantilever Retaining Walls	. 30
Restrained Drained Retaining Walls	. 31
Retaining Wall Drainage	. 32
Sump Pump Design	
Restrained Undrained Retaining Walls	. 33
Dynamic (Seismic) Earth Pressure	
Surcharge from Adjacent Structures	. 35
Waterproofing	
Retaining Wall Backfill	. 36
TEMPORARY EXCAVATIONS	. 37
Temporary Dewatering	. 37
Dewatering Settlement	. 38
Excavation Observations	. 39
SHORING DESIGN	. 39
Soldier Piles – Drilled and Poured	. 40
Lagging	. 42
Lateral Pressures	. 42
Tied-Back Anchors	. 44
Anchor Installation	. 44
Tieback Anchor Testing	. 45
Raker Brace Foundations	
Deflection	. 46
Monitoring	. 47
Shoring Observations	
OUTDOOR CONCRETE FLATWORK	. 47
Concrete Crack Control	. 48
Flatwork Reinforcing	
PAVEMENTS	. 48
SITE DRAINAGE	
STORMWATER DISPOSAL	
Introduction	
DESIGN REVIEW	
CONSTRUCTION MONITORING	
EXCAVATION CHARACTERISTICS	
CLOSURE AND LIMITATIONS	
EXCLUSIONS	
GEOTECHNICAL TESTING	
Classification and Sampling	. 55

TABLE OF CONTENTS

SECTION

PAGE

Mois	sture and Density Relationships	
	ect Shear Testing	
	solidation Testing	
	oratory Compaction Characteristics	
Expa	ansion Index Testing	
-	in Size Distribution	
Atte	rberg Limits	
	6	

ENCLOSURES

References Vicinity Map Plot Plan – Existing Development Plot Plan - Proposed Development Cross-Section A-A' Cross-Section B-B' Local Geologic Map – Dibblee Local Geologic Map - Lamar Local Geologic Map – Yerkes Seismic Hazards Zone Map Historically Highest Groundwater Levels Map Earthquake Fault Zone Map Methane Zone Risk Map Oil Well Location Map Plates A-1 through A-6 Plates B-1 through B-4 Plates C-1 through C-6 Plate D Plate E-1 and E-2 Plate F-1 and F-2 Cone Penetration Test Data by Middle Earth GeoTesting, dated June 21, 2018 (66 pages) Liquefaction Analysis (6 pages) Calculation Sheets (14 pages) Documents from AMEC Environmental and Infrastructure, Inc.: Plot Plan Groundwater Data in Monitoring Wells (2 pages) Cone Penetration Test Data Report by Kehoe Testing Services, dated 2/11/05 (11 pages)

Cone Penetration Test Data Report by Kehoe Testing Services, dated 1/29/13 (27 pages) Boring Logs (13 pages)

GEOTECHNICAL ENGINEERING INVESTIGATION PROPOSED MIXED-USE DEVELOPMENT 942 NORTH BROADWAY LOS ANGELES, CALIFORNIA

INTRODUCTION

This report presents the results of the geotechnical engineering investigation performed on the subject site. The purpose of this investigation was to identify the distribution and engineering properties of the geologic materials underlying the site, and to provide geotechnical recommendations for the design of the proposed development.

As part of this investigation, two borings were drilled using a hollowstem auger to depths of 125 and 75 feet (Boring B-5 and B6, respectively). Two cone penetration tests were sounded as well to depths of 73 and 100 feet (CPT1 and CPT2, respectively).

The preliminary investigation included four exploratory excavations, collection of representative samples, laboratory testing, engineering analysis, review of published geologic data, and the preparation of this report. The exploratory excavation locations are shown on the enclosed Plot Plan - Existing Development. The results of the exploration and the laboratory testing are presented in the Appendix of this report.

PROPOSED DEVELOPMENT

Information concerning the proposed development was furnished by the client. The proposed development consists of the construction of a mixed-use structure. The proposed structure is anticipated to be 27-stories in height with 5-levels of subterranean parking, resulting in an estimated total height above ground of 291 feet.

It is anticipated that the finish floor elevation of the subterranean garage will be at elevation 258 feet above mean sea level. It is anticipated that grading will consist of excavations to a depth of 60 feet below the existing grade for construction of the proposed subterranean garage and foundation elements.

The primary building periods are 2.96 seconds in and east-west orientation and 2.57 seconds in a north-south orientation. Column loads are estimated to be between 1,100 kips and 5,900 kips. Wall loads are estimated to be between 20 and 40 kips per lineal foot. The proposed structure is illustrated in the Plot Plan – Proposed Development.

Any changes in the design of the project or location of the structure, as outlined in this report, should be reviewed by this office. The recommendations contained in this report should not be considered valid until reviewed and modified or reaffirmed, in writing, subsequent to such review.

SITE CONDITIONS

The site is located at 942 North Broadway in the City of Los Angeles, California. The site is roughly square in shape and is estimated to be 0.68 acres in size. The site is bounded by a paved driveway followed by a single-story commercial structure to the north, a three and four-story commercial structure to the east, a five-story mixed-use structure to the south, and North Broadway to the west. The structure to the east has an estimated finish floor elevation of 296 feet and the structure to the south has a finish floor elevation of 277 feet. The site is shown relative to site boundaries on the attached Plot Plan - Existing Development and on Cross Sections A-A' and B-B'.

The site is currently occupied by two and three-story commercial structures and a paved parking lot. The site is generally flat in the paved parking lot area, near elevation 311 feet above mean sea level, but steps approximately 8 feet lower to the east to an irregular-shaped backyard along

the eastern property line. The adjacent property to the east steps down to elevation 296 feet. A retain wall separates the two properties.

Vegetation is limited to planters around the parking lot and in the rear, backyard area. Drainage across the site appears to be by sheetflow to the southeast on the front half of the site. It is not known where water from the east portion of the site is directed.

The neighboring developments consist of commercial and residential structures ranging from a single-story to five stories in height.

Alameda Street Storm Drain

The Alameda Street Storm Drain System cuts across the northeast corner of the site. The easement is approximately 10 feet wide and is illustrated on both Plot Plans. The storm drain pipe is approximately 3½ feet in diameter (inside) with an estimated invert elevation within the site of 282 feet above mean sea level (Los Angeles Department of Public Works, http://navigatela.lacity.org/navigatela/). The approximate location of the storm drain pipe is indicated on the attached Cross Section B-B'.

The subterranean levels of the proposed structure will bisect the storm drain pipe. The subterranean portion of the proposed structure will be faceted so that the pipe will not be surcharged or bisected. A survey will be required to accurately locate the pipe.

Zanja Madre

The Zanja Madre is a historic irrigation ditch that is part of a now-abandoned water system also located at the northeast corner of the site. The system consisted of a series of historic drainage ditches connecting the Los Angeles River to the early city of Los Angeles. Zanja Madre is considered a cultural and historical landmark. The project shall include in its design a five-foot-

wide setback on each side of the conduit. The location of Zanja Madre is shown on both of the Attached Plot Plans.

LOCAL GEOLOGY

The site is located in the Elysian Park Hills which form the northeast border of the Los Angeles Basin. The Elysian Park Hills are composed primarily of upper Miocene and Pliocene-age sedimentary rocks. The localized region is likely underlain by the upper Puente Formation that is composed well bedded siltstone, clayey siltstone, and sandstone. Structurally, the Elysian Park Hills are located on the southern limb of the Elysian Park Anticline. Bedding within the general site vicinity dips to the south and southwest at slight to moderate inclinations of 40 to 55 degrees (Lamar, 1970 and Dibblee, 1989). The geology of the site vicinity is presented on the Local Geologic Maps - Dibblee, Lamar and Yerkes included in this report.

The Los Angeles River is located approximately 3,000 feet to the east of the site. Currently the river is constrained by concrete channel walls. Prior to channelization, the Los Angeles River meandered between the Elysian Park Hills on the west and the Repetto Hills on the east. An ancient meander edge was likely defined by a former riverbank aligned with North Broadway. The Los Angeles River is the source of the alluvium that underlies the site.

Local Faults

Geologic mapping as illustrated by Yerkes, et. al. (1977) indicates an unnamed fault located approximately 500 feet north of the site. The fault trends in a northwest-southwest direction. This fault is not shown on the geologic map by either Lamar (1971), Dibblee (1989), or on the Earthquake Fault Zone map (CGS, 2017). Based on the mapping by Yerkes et. al, (1977), the evidence for the fault appear to be abrupt difference in the bedrock surface contours. If the fault exists, it is not considered active and therefore is not considered a seismic risk to the site. The unnamed fault is shown on the attached Local Geologic Map-Yerkes.

BACKGROUND RESEARCH

AMEC Environment and Infrastructure, Inc., dated March 1, 2013, Report of Geotechnical Investigation, Proposed Chinatown Blossom Plaza Project, 900 North Broadway, Los Angeles, California, Project No. 4953-13-0061.

This firm reviewed the permit files available for the adjacent site to the south, located at 900 North Broadway. The above-referenced report was obtained. AMEC also performed earlier investigations in 2004 and 2008 as predecessor firms. In total, 17 borings were drilled to depth of up 65 ½ feet below the ground surface. Twelve Cone Penetration Tests were also performed to depths of 70 ½ feet. Additional borings were drilled to assess methane and groundwater issues. The borings identified fill soils ranging in depth for 3 to 19 feet underlain by alluvial soil consisting of sandy silt, clay sandy clay and clayey sand. Bedrock was claimed to be encountered at depth of 45 to 62 feet. Ground water was identified at depth of 33 to 49 feet.

Liquefaction settlement was identified to be up to 2 ¹/₂ inches in the western portion of the site while the eastern portion was estimated to be "several inches". Ground improvement was recommended in the eastern portion of the site with a mat foundation. The western portion of the site was recommended to be supported on a mat foundation, but ground improvement was not needed on the west side of the site. The liquefiable layer was identified between elevations of 270 to 235 feet. The report was approved the City of Los Angeles Department of Building and Safety in a letter dated April 11, 2013 (LOG No. 79917).

Borings drilled by AMEC that appear within the limits of the attached Plot Plan are shown. The boring and CPT logs are included in the Appendix of this report.

AMEC Environment and Infrastructure, Inc., dated March 26, 2013, Supplemental Geotechnical Investigation, Proposed Chinatown Blossom Plaza Project, 900 North Broadway, Los Angeles, California, Project No. 4953-13-0061.

The purpose of this investigation was to re-evaluate liquefaction potential at the site. Three additional borings were drilled to depths ranging from 60 to 118 feet. Based on laboratory data obtained from soil samples taken at depths from 25 to 35 feet and 50 to 60 feet, liquefaction settlement was estimated to range from 1 to 2 ¹/₂ inches. Static plus seismic settlement was estimated to be about 3 inches with 1 ¹/₂ inches of differential settlement. The report recommended that ground improvement was no longer required. The letter and the report described above were approved by the City of Los Angeles in a letter dated April 11, 2013 (LOG No. 79917).

Boring 103 was drilled within 15 feet distance of the southern property line of the subject site to a depth of 118 feet. Bedrock consisting of Sandy Siltstone was identified at a depth of 114 feet.

Geosyntec Consultants, Report dated May 4, 2016, Addendum No. 1, Final Compaction Report and Record of Related Geotechnical Observations - Blossom Plaza, Project No. HL1442.

The plan included in the report indicates that the finish floor elevation is 277 feet. The plan also indicates the northern wall (coincident with the southern wall of the subject site) was supported with a raker system. The report does not indicate that soil improvement was performed on the property.

GEOTECHNICAL EXPLORATION

FIELD EXPLORATION

The site was initially explored on January 8 and February 6, 2018 by excavating four borings. The excavations varied in depth between 30 to 90 feet below the existing site grade. The borings were advanced with the aid of a truck-mounted drilling machine using 8-inch diameter hollowstem augers.

On June 21 and June 25, two additional borings (Borings B5 and B6) were drilled to depths of 125 and 75 feet below the ground surface using 8-inch diameter hollowstem augers.

Two CPT soundings were also performed on June 21, 2018. Due to the Gravelly and cobbley composition of the upper 30 feet of soil, the soundings were predrilled using the 8-inch diameter hollowstem auger to a depth of 30 feet. The CPT soundings were performed at the bottom the hole and extended to depth of 73 feet (CPT1) and 100 feet (CPT2). The boring and CPT locations are shown on the attached Plot Plans and the geologic materials encountered are logged on Plates A-1 through A-6. The CPT results and analysis are included in the Appendix. The attached Cross Sections A-A' and B-B' show the subsurface distribution of the geologic materials below the site.

The locations of the exploratory excavations were measured from hardscape features shown on the attached Plot Plans. The elevations were interpolated from elevation contours shown on the City of Los Angeles, topographic map, 2006 contours (City of Los Angeles, 2018). The locations of the exploratory excavations should be considered accurate only to the degree implied by the method used.

Geologic Materials

Fill soil was encountered in all exploratory excavations to depths of up to 8 feet below the existing site grade. The fill encountered in the borings consists of silty sand to clayey silt. The fill was observed to be dark brown in color, moist, medium dense, stiff, and fine grained.

The fill is underlain by alluvial soil, consisting of interlayered mixtures of silty clay to clayey sand and silty sand to gravelly sand. The alluvium ranges in color from yellowish or grayish brown to dark brown, and is slightly moist to wet, medium dense to very dense, stiff, and fine to medium grained with occasional gravel.

The alluvium can be divided into several layers that are depicted on the attached Cross Sections A-A' and B-B'. Notable layers include 1) a cobbley sand that occurs between 12 and 25 feet. This layer may have large cobbles and boulders that could create difficulties during drilling. 2) A silty clay and clayey silt layer was identified at 43 and 50 feet. This layer is relatively soft and is not considered suitable for foundation support, and 3) a moderately dense sand that is liquefiable to a depth of 60 feet or elevation 250 feet. This layer was identified by this firm and the consultant on the adjacent site to be liquefiable. 4) Sand and silty sand that is dense to very dense. The proposed foundation should bear on this layer.

Sandstone bedrock of the Puente Formation consists of well bedded, siltstone and sandstone (Lamar, 1970). The rock is moderately hard and dips to the south at an inclination of 30 to 50 degrees. The bedrock was encountered in Boring 5 at a depth of 115 feet (elevation 193 feet). Boring Log B-103 located 15 feet south of the site, the depth to bedrock is 114 feet (elevation 196 feet).

The attached Local Geologic Map–Yerkes, provides contours at the top of the bedrock surface. The map indicates the depth to bedrock beneath the site is approximately 85 feet. The depth to rock was found approximately 30 feet deeper, the bedrock surface likely descends to the east, towards the LA River.

The boring location are shown on the attached Plot Plans and the subsurface distribution of the geologic materials is shown on the attached Cross Sections A-A' and B-B'. The boring log is included in the Appendix. More detailed descriptions of the geologic materials encountered may be obtained from individual logs of the subsurface excavations.

Groundwater

Groundwater was encountered in Boring B3 and Boring B4 at depths of 55 feet and 47¹/₂ feet, which correlate to elevations of 255 and 259.5 feet, respectively. The recently drilled Borings

B5 and B6 identified water at a depth of 45 feet below the ground surface which correlate to elevations of 263 and 255 feet, respectively.

The report prepared by AMEC in 2013 included readings from several monitoring wells installed by the City of Los Angeles on the adjacent site to the south. Eleven monitoring wells were read between December 2004 and February 2005. A Plot Plan showing the location of all the borings by AMEC is included in the Appendix. The two nearest wells to the site, Monitoring Wells MW-1 and MW-2, are shown on the Attached Plot Plan - Existing Development and Plot Plan - Proposed Development. The highest water elevation indicated by the wells was 265.95 feet during the monitoring period. The elevation of the water surface is shown on the attached Cross Sections.

The California Geological Survey Seismic Hazard Evaluation for the Los Angeles Quadrangle indicates the historic high groundwater level to be at a depth of 20 feet below the ground surface. Due to the sloping ground surface that descends to the west, the groundwater surface is anticipated to descend to the east as well. The historically highest ground water elevation ranges from 289 feet on the west side of the site to 281 on the east side of the site. A copy of this plate is included in the Appendix as Historically Highest Groundwater Levels Map.

Fluctuations in the level of groundwater may occur due to variations in rainfall, temperature, and other factors not evident at the time of the measurements reported herein. Fluctuations also may occur across the site. High groundwater levels can result in changed conditions.

Caving

Caving could not be directly observed during drilling due to the continuously-cased design of a hollow-stem auger. However, based on the experience of this firm, large diameter excavations that encounter granular, cohesionless soils, and excavations below the groundwater table, will most likely encounter caving.

LOS ANGELES CITY OIL FIELD AND OIL WELLS

The site is located within the Los Angeles City Oil Field as indicated by the Division of Oil Gas and Geothermal Resources (DOGGR), 2018, Well Finder Website. A number of wells are located in near proximity but not on the subject site or the adjacent properties. The wells are shown on the attached Oil Well Location Map. The wells identified near the site are designated with a "plugged" or "buried" status.

METHANE ZONES

Based on review of the City of Los Angeles Methane and Methane Buffer Zones map (City of Los Angeles, 2003), the site is located within a Methane Buffer Zone. A qualified methane consultant should be retained to consider the requirements and implications of the City's Methane Buffer Zone designation. A copy of the portion of the map covering the project site is included herein.

SEISMIC EVALUATION

REGIONAL GEOLOGIC SETTING

The subject site is located in the Los Angeles Basin. The Los Angeles Basin is located at the northern end of the Peninsular Ranges Geomorphic Province. The basin is bounded by the east and southeast by the Santa Ana Mountains and San Joaquin Hills, to the northwest by the Santa Monica Mountains. Over 22 million years ago the Los Angeles basin was a deep marine basin formed by tectonic forces between the North American and Pacific plates. Since that time, over 5 miles of marine and non-marine sedimentary rock as well as intrusive and extrusive igneous rocks have filled the basin. During the last 2 million years, defined by the Pleistocene and Holocene epochs, the Los Angeles basin and surrounding mountain ranges have been uplifted to form the present day landscape. Erosion of the surrounding mountains has resulted in deposition

of unconsolidated sediments in low-lying areas by rivers such as the Los Angeles River. Areas that have experienced subtle uplift have been eroded with gullies.

REGIONAL FAULTING

Based on criteria established by the California Division of Mines and Geology (CDMG) now called California Geologic Survey (CGS), faults may be categorized as active, potentially active, or inactive. Active faults are those which show evidence of surface displacement within the last 11,000 years (Holocene-age). Potentially-active faults are those that show evidence of most recent surface displacement within the last 1.6 million years (Quaternary-age). Faults showing no evidence of surface displacement within the last 1.6 million years are considered inactive for most purposes, with the exception of design of some critical structures.

Buried thrust faults are faults without a surface expression but are a significant source of seismic activity. They are typically broadly defined based on the analysis of seismic wave recordings of hundreds of small and large earthquakes in the southern California area. Due to the buried nature of these thrust faults, their existence is usually not known until they produce an earthquake. The risk for surface rupture potential of these buried thrust faults is inferred to be low (Leighton, 1990). However, the seismic risk of these buried structures in terms of recurrence and maximum potential magnitude is not well established. Therefore, the potential for surface rupture on these surface-verging splays at magnitudes higher than 6.0 cannot be precluded.

SEISMIC HAZARDS AND DESIGN CONSIDERATIONS

The primary geologic hazard at the site is moderate to strong ground motion (acceleration) caused by an earthquake on any of the local or regional faults. The potential for other earthquake-induced hazards was also evaluated including surface rupture, liquefaction, dynamic settlement, inundation and landsliding.

Surface Rupture

Surface rupture is defined as surface displacement which occurs along the surface trace of the causative fault during an earthquake. The CGS published and map entitled "Earthquake Zone of Required Investigation" that shows the locations of Alquist-Priolo Earthquake Fault Zones. The subject site is not located within an Alquist-Priolo Earthquake Fault Zone. The nearest fault zone is located approximately 3.4 miles to the north and is associated with the Raymond Fault Zone. Accordingly, the potential for surface rupture at the subject site is considered to be low. A copy of this map may be found in the Appendix of this report.

Liquefaction

Liquefaction is a phenomenon in which saturated silty to cohesionless soils are subject to a temporary loss of strength due to the buildup of excess pore pressure during cyclic loading conditions such as those induced by an earthquake. Liquefaction-related effects include loss of bearing strength, amplified ground oscillations, lateral spreading, and flow failures.

According to the Earthquake Zones of Required Investigation Map (CGS, 2017) the site is located within a potentially liquefiable area. This determination is based on groundwater depth records, soil type and distance to a fault capable of producing a substantial earthquake.

A site-specific liquefaction analysis was performed based on the SPT results of Borings B4, B5 and B6 which were drilled to depths of 90, 125 and 75 feet, respectively. The sampling followed the Recommended Procedures for Implementation of the California Geologic Survey Special Publication 117A, Guidelines for Analyzing and Mitigating Seismic Hazards in California (CGS, 2008), and the EERI Monograph (MNO-12) by Idriss and Boulanger (2008). This semiempirical method is based on a correlation between measured values of Standard Penetration Test (SPT) resistance and field performance data. Groundwater was encountered during exploration at depths of 47¹/₂ and 45 feet below the ground surface. According to the Seismic Hazard Zone Report for the Los Angeles 7¹/₂-Minute Quadrangle (CDMG, 1998, Revised 2006), the historic-high groundwater level for the site is estimated at a depth of 20 feet below the ground surface.

The peak ground acceleration (PGA) and modal magnitude were obtained from the USGS websites, using the Probabilistic Seismic Hazard Deaggregation program (USGS, 2014) and the U.S. Seismic Design Maps tool (USGS, 2018). A Site Class "D" (Stiff Soil Profile) and an estimated shear wave velocity of 259 meters per second were utilized for Vs30 (Tinsley and Fumal, 1985) in the USGS seismic programs. A modal magnitude (M_W) of 6.9 was obtained using the USGS Probabilistic Seismic Hazard Deaggregation program (USGS, 2014). A peak ground acceleration of 0.97g (2% exceedance in 50 years) was obtained using the U.S. Seismic Design Maps tool. The peak ground acceleration for a seismic event of 10% exceedance in 50 years was estimated my multiplying 0.97g by 2/3 for a result of 0.65g. These parameters are used in the enclosed liquefaction analyses.

Standard Penetration Test (SPT) data from Borings B4, B5 and B6 were collected at 5-foot intervals. Samples of the collected materials were conveyed to the laboratory for testing and analysis. The percent of material passing through a Number 200 sieve, Atterberg Limits, and the plasticity index (PI) of representative samples of the soils encountered in the exploratory boring are presented on the enclosed E and F-Plates. Based on CGS Special Publication 117A (CDMG, 2008), the vast majority of liquefaction hazards are associated with sandy soil and silty soil of low plasticity. Furthermore, cohesive soils with PI between 7 and 12 and moisture content greater than 85 percent of the liquid limit are susceptible to liquefaction.

The procedure presented in the SP117A guidelines was followed in analyzing the liquefaction potential of the subject site. The SP117A guidelines were developed based on a paper titled, "Assessment of the Liquefaction Susceptibility of Fine-Grained Soils", by Bray and Sancio (2006). According to the SP117A, soils having a Plastic Index greater than 18 exhibit clay-like

Non Liquefiable

behavior, and the liquefaction potential of these soils are considered to be low. Therefore, where the results of Atterberg Limits testing showed a Plastic Index greater than 18, the soils would be considered non-liquefiable, and the analysis of these soil layers was turned off in the liquefaction susceptibility column.

SUMMARY OF LIQUEFACTION ANALYSES USING SPT DATA **Shaking Condition Boring B4 Boring B5 Boring B6** (Total Depth 90') (Total Depth 125') (Total Depth 75 feet) Non Liquefiable 2% Exceedence in 50 2.87 inches between Non Liquefiable 2475 depth of 50 and 59 Years. feet, (elev. 259 and recurrence Interval 250'). Non liquefiable below 59 feet.

Below is a summary table of the finding of the liquefaction Analysis:

2.87 inches between

depth of 50 and 59

feet, (elev. 259 and 250'). Non liquefiable

below 59 feet

The soil layers between 50 and 59 feet in Boring B4 were identified to be liquefiable as a result of seismic events with 2475 and 475 recurrence intervals. This layer is identified on the attached Cross Sections A-A' and B-B' as a lightly shaded zone. AMEC identified that same soil layer to be liquefiable in their report dated March 1, 2013. The underlying dense sand layer is not liquefiable and may be used to support the structure. It must be noted, however, that the seismic base of the structure should be taken at the base of the liquefiable layer.

Non Liquefiable

CPT Analysis

10% Exceedence in 50 Years, 475 year

Recurrence Interval

The cone penetration test data was also analyzed to identify liquefaction potential using the computer program CLiq (version 1.7.6.34) by Geologismiki Geotechnical Software. The same earthquake parameters described above were input into the program. A summary of the findings is presented below:

SUMMARY OF LIQUEFACTION ANALYSES USING CPT DATA				
Shaking Condition	CPT1	CPT2		
	(Total Depth 74')	(Total Depth 100')		
2% Exceedence in 50 Years,	6.2 inches from 30 to 70 feet,	4 inches of settlement from 30		
2475 recurrence Interval	0.25 inch below depth of 60	to 100 feet. 1.7 inches below a		
	feet (elevation 250) where	depth of 60 feet where		
	settlement occurs in layer	settlement occurs in layers 82		
	from 69 to 70 feet	to 86 feet and 92 to 100 feet.		
10% Exceedence in 50	Same as above	3 inches of settlement from 30		
Years, 475 year Recurrence		to 100 feet. 1 inch below a		
Interval		depth of 60 feet where		
		settlement occurs in layers 82		
		to 86 feet and 92 to 100 feet.		

Liquefaction Settlement

SPT Methodology

The anticipated liquefaction settlement of 2.9 inches is predicted to occur during a design based and maximum considered seismic event in layers above the moderately dense sand between depths of 50 to 59 feet (equivalent to elevations 241 to 250 feet). However, since the proposed excavation (including the foundation elements) will extend to elevation 250 feet, the liquefiable layers will be removed, the removing the risk of seismic settlement.

CPT Methodology

Total liquefaction settlement occurs in the CPT soundings CPT 1 and CPT2 ranging from 4 to 6.2 inches where shaking is equivalent to an event with a 2% probability of exceedance in 50 years. However most of the predicted settlement occurs above the depth of 59 feet that will be removed for the proposed structure. Below this depth, the settlement is estimated to be on the order of 0.25 inch and 1.7 inches. The for the earthquake with a 10% chance of exceedance in 50 years the settlement ranges from 0.25 inch to 1 inch within the 100 foot depth interval. In both cases, the base of the foundation will be separated by at least 9 feet of non-liquefiable soils.

Summary

Both methods of analysis, The SPT and CPT confirm the soils with the greatest liquefaction settlement is present from the depth of 52 to 59 feet. However, the two methods do not agree with potential for liquefaction below that depth. It is the opinion of this firm that the potential for liquefaction below the depth of 60 feet is very low. However as a precaution, the lower bound settlement of 0.25 inch, below the depth of 60 feet, as determined by the CPT analysis, should be considered in design.

Surface Manifestation

It has been shown in recent studies by O'Rourke and Pease (1997) and Youd and Garris (1995), building upon work by Ishihara (1985), that the visible effects of liquefaction on the ground surface are only manifested if the relative and absolute thicknesses of liquefiable soils to overlying non-liquefiable surface material fall within a certain range.

The study by Ishihara (1985) presents data from three separate earthquakes where subsurface information was available regarding the absolute and relative thicknesses of liquefiable earth materials and overlying non-liquefiable materials. Information was obtained from sites where the surface effects of liquefaction were observed, and from sites where there were no visible surface effects. From this data, Ishihara (1985) graphs the liquefiable soil thickness vs. the overlying non-liquefiable thickness, and presents bounds identifying a zone within which surface effects of liquefaction were observed.

Youd and Garris (1995) build upon the work by Ishihara (1985), compiling data from 308 borings taken at sites shaken by 15 different earthquakes, ranging in magnitude from 5.3 to 8.0. They find that the boundaries presented by Ishihara relating the thicknesses of non-liquefiable surface layers to underlying potentially liquefiable layers remain valid for this extensive set of data, with very few exceptions. The particular site conditions which contributed to the few exceptional cases are not present on the subject site.

O'Rourke and Pease (1997) also compare the liquefiable vs. non-liquefiable thickness bounds initially proposed by Ishihara (1985) with data obtained from areas of San Francisco where the surface effects of liquefaction were observed during the 1989 Loma Prieta earthquake. They find general agreement with the previous findings of Ishihara (1985) and Youd and Garris (1995).

On the subject site, given the close proximity of the liquefiable layer to the deepest subterranean level, the relative thicknesses of liquefiable soils to overlying non-liquefiable surface material fall within the bounds wherein surface effects of liquefaction have been observed during past earthquakes. As a result, it is conceivably possible that surface effects of liquefaction or bearing capacity failure could occur within the subject site. It is the recommendation of Geotechnologies, Inc. that the foundation system for the proposed development should bear upon soil strata that is below the layer that is susceptible to liquefaction.

Lateral Spreading

Lateral spreading is the most pervasive type of liquefaction-induced ground failure. During lateral spread, blocks of mostly intact, surficial soil displace downslope or towards a free face along a shear zone that has formed within the liquefied sediment. According to the procedure provided by Bartlett, Hansen, and Youd, "Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement", ASCE, Journal of Geotechnical Engineering, Vol. 128, No. 12, December 2002, when the saturated cohesionless sediments with $(N_1)_{60} > 15$, significant displacement is not likely for M < 8 earthquakes.

The saturated cohesionless sediments underlying the subject site have corrected $(N_1)_{60}$ value greater than 15. And, as provided by the Seismic Hazard Zone Report for the Los Angeles 7.5-Minute Quadrangles, Los Angeles County, California, (OFR 98-19) by CDMG, the Raymond Fault, which contributes the majority of the ground motion to the site, has a predominant

earthquake magnitude, M_w , of 6.9. Therefore, the potential for lateral spread is considered to be remote for the subject site.

Dynamic Dry Settlement

Seismically-induced settlement or compaction of dry or moist, cohesionless soils can be an effect related to earthquake ground motion. Such settlements are typically most damaging when the settlements are differential in nature across the length of structures.

Significant dynamic dry settlement is not expected occur due to the existence of high groundwater underlying the proposed development. Some seismically-induced dry settlement of the proposed structures should be expected as a result of strong ground-shaking, however, due to the uniform properties of the underlying geologic materials, excessive differential settlements are not expected to occur.

Tsunamis, Seiches and Flooding

Tsunamis are large ocean waves generated by sudden water displacement caused by a submarine earthquake, landslide, or volcanic eruption. The site is high enough and far enough from the ocean to preclude being prone to hazards of a tsunami.

Review of the County of Los Angeles Flood and Inundation Hazards Map, Leighton (1990), indicates the site does not lie within the potential mapped inundation boundaries due to a seiche or a breached upgradient reservoir.

Landsliding

The site will be supported with retaining walls; no soil faces will be left exposed. As a result, the potential for seismically-induced landslides is considered to be negligible.

CONCLUSIONS AND RECOMMENDATIONS

Based upon the exploration, laboratory testing, and research, it is the finding of Geotechnologies, Inc. that construction of the proposed mixed-use structure is considered feasible from a geotechnical engineering standpoint provided the advice and recommendations presented herein are followed and implemented during construction.

The site is underlain by fill that consists of silty sand to clayey silt that extends to a depth of 8 feet below the ground surface. The existing fill soil is considered to be unsuitable for support of foundations, floor slabs, or additional fill soil. The deepest fill will be located along the eastern property line as backfill and above a Storm drain line located at the northeast corner of the site. With the exception of the fill overlying the storm drain, the existing fill will be removed for the construction of the proposed subterranean garage levels.

The fill is underlain by alluvium consisting of interlayered mixtures of silt, clay and sand, gravel and cobbles. Notable layers include 1) a gravelly and cobbley sand from 10 to 30 feet; 2) Silty moderately dense silty sand and Sand from 30 to 45 feet; 3) silty clay and clay that is variable in thickness but varies from 40 to 60 feet and; 4) Sand that is moderately dense from 50 to 60 feet and dense sand and silty sand from 60 to 115 feet.

Siltstone and Sandstone bedrock of the Puente Formation underlies the site. Boring B5 for this investigation identified rock at a depth of 115 feet. A boring drilled on the adjacent site to the south by another consultant (MACTEC, 2013) encountered bedrock at a depth of 114 feet below the ground surface.

Groundwater was observed at depths between 45 to 55 feet below the ground surface, which is equivalent to elevations 265 and 257 feet, respectively. Monitoring wells located on the adjacent site to the south identified ground water below a depth of 43 feet (near elevation 266 feet) in 2004 and 2005. The historically highest groundwater level is estimated at 20 feet below ground

surface but is manifested as an easterly-descending surface ranging in elevation from 289 feet to 282 feet above mean sea level. The structure will be required to withstand the hydrostatic pressures consistent with the historically highest groundwater level.

Based on the attached SPT and CPT liquefaction analyses, the soils are liquefiable. However, according to the SPT analysis, the settlement is limited to the soils above the elevation 250 feet. The CPT analysis indicates settlement may occur in layers as deep as 100 feet. However, the two methods do not agree with potential for liquefaction below that depth. It is the opinion of this firm that the potential for liquefaction below the depth of 60 feet is very low since SPT blow count below this depth exceeded 30 blows per foot. However as a precaution, the lower bound settlement of 0.25 inch below the depth of 60 feet, as determined by the CPT analysis, should be considered in design.

Total settlement of the mat foundation from both static and seismic sources should be 1.25 inches. Since liquefaction settlement of the surrounding area may be as much as 3 inches, utility connection tying into the structure should be designed with flexible connections.

The site may be classified as Site Class D. It must be noted that the seismic base of the structure must be taken at the base of the liquefiable soils. The estimated building period of the proposed structure is on the order of 2.5 seconds. A site specific response spectrum analysis will be required for the site.

Based on the available geotechnical findings, the structure should be supported on a mat foundation that bears on the dense to very dense sand found near elevation 250 feet. It must be noted that current ground water was identified at a depth of 47 feet (elevation 265 feet) therefore, temporary construction dewatering measures will be necessary. The expected number and depths of well-points, expected flow rates, and expected pre-pumping time frames should be determined during a dewatering test program conducted by a qualified dewatering consultant. Once the temporary construction dewatering is discontinued, the water table will likely return to its current elevation.

Dewatering will occur between the elevation of 264 and 250 feet above mean sea elevation. The layer to be dewatered is a silty clay and clayey silt. Dewatering will occur from dense silty sand and sand below the elevation of 250 feet. Due to the different finish floor elevation of the adjacent structures as well as the different loads for each structure the dewatering settlement was calculated for each adjacent property. The dewatering settlement will vary from 0.2 to 0.4 inches. Differential settlement is anticipated to be 0.1 inch. In the opinion of this firm such settlement will not be manifested on the structures. As a precaution, the adjacent structures should have a distress inventory performed prior to construction of the subject site. In addition, the adjacent structures should have survey monuments installed to verify the property elevations prior and after building completion.

The site is not underlain by the surface trace of any active faults. The site is located in the City of Los Angeles Oil Filed, however not wells are indicated to have been drilled on the subject site or adjacent properties. The site is located in a City of Los Angeles Methane Buffer Zone. A methane consultant will be needed to identify appropriate methane mitigation measures.

Stormwater infiltration into onsite soils is not considered feasible. Some other means of stormwater disposal, such as flow-through planters, will be necessary.

Based on review of a report prepared for the existing structure to the south, the retaining wall was constructed using raker-braced shoring. No tiebacks extend onto the subject site.

Storm Drain and Zanja Madre

A storm drain, the Alameda Street Storm Drain System, is located near eastern corner of the site near elevation 285 feet as indicated on Cross-Section B-B'. Zanja Madre is a historically important water- conveyance feature located near the drain. It is the understanding of this firm that the proposed structure will be designed to avoid contact with two features.

The validity of the conclusions and design recommendations presented herein is dependent upon review of the geotechnical aspects of the proposed construction by this firm. The subsurface conditions described herein have been projected from borings on the site as indicated and should in no way be construed to reflect any variations which may occur between these borings or which may result from changes in subsurface conditions. Any changes in the design or location of any structure, as outlined in this report, should be reviewed by this office. The recommendations contained herein should not be considered valid until reviewed and modified or reaffirmed subsequent to such review.

SEISMIC DESIGN CONSIDERATION

2016 California Building Code Seismic Parameters

If the structure is supported on a Mat Foundation bearing on the non-liquefiable soils, according to Table 20.3-1 presented in ASCE 7-10, the Site Class is D which corresponds to a "Stiff Soil" Profile, according to Table 20.3-1 of ASCE 7-10. This information and the site coordinates were input into the USGS U.S. Seismic Design Maps tool (Version 3.1.0) to calculate the ground motions for the site.

2016 CALIFORNIA BUILDING CODE SEISMIC PARAMETERS		
Site Class	D	
Mapped Spectral Acceleration at Short Periods (S_S)	2.557g	
Site Coefficient (F _a)	1.0	
Maximum Considered Earthquake Spectral Response for Short	2.557g	
Periods (S _{MS})		
Five-Percent Damped Design Spectral Response Acceleration at	1.705g	
Short Periods (S _{DS})		
Mapped Spectral Acceleration at One-Second Period (S ₁)	0.898g	
Site Coefficient (F _v)	1.5	
Maximum Considered Earthquake Spectral Response for One-	1.347g	
Second Period (S _{M1})		
Five-Percent Damped Design Spectral Response Acceleration for	0.898g	
One-Second Period (S _{D1})		

It is recommended that the seismic design values be determined as part of a site-specific ground motion study.

FILL MATERIALS

As much as 8 feet of fill materials were encountered during exploration. It is anticipated that the fill will be removed during excavation of the proposed subterranean parking levels. At the northwest corner of the site, where the Storm Drain and Zanja Madre are located, the fill above these features will be left in place.

WATER-SOLUBLE SULFATES

The Portland cement portion of concrete is subject to attack when exposed to water-soluble sulfates. Usually the two most common sources of exposure are from soil and marine environments.

The source of natural sulfate minerals in soils include the sulfates of calcium, magnesium, sodium, and potassium. When these minerals interact and dissolve in subsurface water, a sulfate concentration is created, which will react with exposed concrete. Over time sulfate attack will destroy improperly proportioned concrete well before the end of its intended service life.

The water-soluble sulfate content of the onsite geologic materials was tested by California Test 417. The water-soluble sulfate content was determined to be less than 0.1% percentage by weight for the soils tested. Based on American Concrete Institute (ACI) Standard 318, the sulfate exposure is considered to be negligible for geologic materials with less than 0.1% and Type I cement may be utilized for concrete foundations in contact with the site soils.

GRADING GUIDELINES

The following guidelines are provided for any miscellaneous compaction that may be required, such as retaining wall backfill or subgrade preparation.

Site Preparation

- A thorough search should be made for possible underground utilities and/or structures. Any existing or abandoned utilities or structures located within the footprint of the proposed grading should be removed or relocated as appropriate.
- All vegetation, existing fill, and soft or disturbed geologic materials should be removed from the areas to receive controlled fill. All existing fill materials and any disturbed geologic materials resulting from grading operations shall be completely removed and properly recompacted prior to foundation excavation.
- Any vegetation or associated root system located within the footprint of the proposed structures should be removed during grading.
- Subsequent to the indicated removals, the exposed grade shall be scarified to a depth of six inches, moistened to optimum moisture content, and recompacted in excess of the minimum required comparative density.
- The excavated areas shall be observed by the geotechnical engineer prior to placing compacted fill.

Compaction

The City of Los Angeles Department of Building and Safety requires a minimum comparative compaction of 95 percent of the laboratory maximum density where the soils to be utilized in the fill have less than 15 percent finer than 0.005 millimeters. Most of the soils tested by this firm would require the 95 percent compaction requirement.

All fill should be mechanically compacted in layers not more than 8 inches thick. All fill shall be compacted to at least 95 percent of the maximum laboratory density for the materials used.

The maximum density shall be determined by the laboratory operated by Geotechnologies, Inc. using the test method described in the most recent revision of ASTM D 1557.

Field observation and testing shall be performed by a representative of the geotechnical engineer during grading to assist the contractor in obtaining the required degree of compaction and the proper moisture content. Where compaction is less than required, additional compactive effort shall be made with adjustment of the moisture content, as necessary, until a minimum of 95 percent compaction is obtained.

Acceptable Materials

The excavated onsite materials are considered satisfactory for reuse in the controlled fills as long as any debris and/or organic matter is removed.

Any imported materials shall be observed and tested by the representative of the geotechnical engineer prior to use in fill areas. Imported materials should contain sufficient fines so as to be relatively impermeable and result in a stable subgrade when compacted. Any required import materials should consist of geologic materials with an expansion index of less than 20. The water-soluble sulfate content of the import materials should be less than 0.1% percentage by weight.

Imported materials should be free from chemical or organic substances which could affect the proposed development. A competent professional should be retained in order to test imported materials and address environmental issues and organic substances which might affect the proposed development.

Utility Trench Backfill

Utility trenches should be backfilled with controlled fill. The utility should be bedded with clean sands at least one foot over the crown. The remainder of the backfill may be onsite soil compacted to 95 percent of the laboratory maximum density. Utility trench backfill should be tested by representatives of this firm in accordance with the most recent revision of ASTM D-1557.

Wet Soils

Water was encountered in the borings at elevations ranging from 255 to 263 feet above mean sea level. The proposed excavation (including foundation elements) will extend to an elevation of 250 feet. The soil which will be exposed at the bottom of the excavation were above optimum moisture content - particularly below the depths that water was observed. It is anticipated that if any excavated material from the bottom of the excavation is to be placed as compacted fill, the soil will require significant drying and aeration prior to recompaction.

Pumping (yielding or vertical deflection) of the high-moisture content soils at the bottom of the excavation is not anticipated since relatively clean sand will be exposed at the bottom of the excavation. If pumping is encountered, angular minimum ³/₄-inch gravel and/or crushed concrete should be placed and worked into the subgrade. The exact thickness of the gravel would be a trial and error procedure, and would be determined in the field. It would likely be on the order of 1 to 2 feet thick.

The gravel will help to densify the subgrade as well as function as a stabilization material upon which heavy equipment may operate. It is not recommended that rubber tire construction equipment attempt to operate directly on the pumping subgrade soils prior to placing the gravel. Direct operation of rubber tire equipment on the soft subgrade soils will likely result in excessive disturbance to the soils, which in turn will result in a delay to the construction schedule since

those disturbed soils would then have to be removed and properly recompacted. Extreme care should be utilized to place gravel as the subgrade becomes exposed.

<u>Shrinkage</u>

Shrinkage results when a volume of soil removed at one density is compacted to a higher density. A shrinkage factor between 5 and 10 percent should be anticipated when excavating and recompacting the existing fill and underlying native geologic materials on the site to an average comparative compaction of 92 percent.

Weather Related Grading Considerations

When rain is forecast all fill that has been spread and awaits compaction shall be properly compacted prior to stopping work for the day or prior to stopping due to inclement weather. These fills, once compacted, shall have the surface sloped to drain to an area where water can be removed.

Temporary drainage devices should be installed to collect and transfer excess water to the street in non-erosive drainage devices. Drainage should not be allowed to pond anywhere on the site, and especially not against any foundation or retaining wall. Drainage should not be allowed to flow uncontrolled over any descending slope.

Work may start again, after a period of rainfall, once the site has been reviewed by a representative of this office. Any soils saturated by the rain shall be removed and aerated so that the moisture content will fall within three percent of the optimum moisture content.

Surface materials previously compacted before the rain shall be scarified, brought to the proper moisture content and recompacted prior to placing additional fill, if considered necessary by a representative of this firm.

Geotechnical Observations and Testing During Grading

Geotechnical observations and testing during grading are considered to be a continuation of the geotechnical investigation. It is critical that the geotechnical aspects of the project be reviewed by representatives of Geotechnologies, Inc. during the construction process. Compliance with the design concepts, specifications or recommendations during construction requires review by this firm during the course of construction. Any fill which is placed should be observed, tested, and verified if used for engineered purposes. Please advise this office at least twenty-four hours prior to any required site visit.

FOUNDATION DESIGN

The proposed mixed-use structure may be supported on a mat foundation as long as the liquefiable soils are removed and the mat is supported on the dense, non-liquefiable soils found near the elevation of 250 feet. If silt or clay layers are identified at the base of the excavation, the excavation should be deepened to remove these layers.

It is anticipated that the mat foundation will have an average bearing pressure of 5,400 pounds per square foot with locally higher pressures needed. An average bearing capacity of 7,000 psf may be used with the maximum not exceeding 10,000 psf. The mat foundation may be designed utilizing a modulus of subgrade reaction of 350 pounds per cubic inch. This value is a unit value for use with a one-foot square footing. The modulus should be reduced in accordance with the following equation when used with larger foundations.

 $K = K_1 * [(B + 1) / (2 * B)]^2$

where K = Reduced Subgrade Modulus $K_1 = Unit$ Subgrade Modulus B = Foundation Width (feet)

Lateral Design for Mat Foundation

Resistance to lateral loading may be provided by soil friction, and by the passive resistance of the soils. A coefficient of friction of 0.4 may be used with the dead load forces between footings and the underlying supporting soils.

Passive earth pressure for the sides of footings poured against undisturbed soil may be computed as an equivalent fluid having a density of 500 pounds per cubic foot, with a maximum earth pressure of 5,000 pounds per square foot. When combining passive and friction for lateral resistance, the passive component should be reduced by one third. A one-third increase in the passive value may be used for wind or seismic loads. A minimum safety factor of 2 has been utilized in determining the allowable passive pressure.

Uplift Resistance

The mat foundation must be design to resist uplift caused by the historically highest groundwater table which may rise to an elevation 289 feet at its highest point on the site. Since the finish floor elevation will be near elevation 258 feet, a head of 31 feet should be considered in the design. If the building will be designed as entirely hydrostatic from the ground surface to the Finish Floor Elevation, the head should be on the order of 52 feet.

Mat Foundation Settlement

The majority of the foundation settlement is expected to occur on initial application of loading. The maximum initial settlement is not expected to exceed approximately 0.3 inch and will occur below the most heavily loaded area of the mat foundation. Differential settlement is not expected to exceed 0.5 inches.

Foundation Observations

It is critical that all foundation excavations are observed by a representative of this firm to verify penetration into the recommended bearing materials. The observation should be performed prior to the placement of reinforcement. Foundations should be deepened to extend into satisfactory geologic materials, if necessary. Foundation excavations should be cleaned of all loose soils prior to placing steel and concrete. Any required foundation backfill should be mechanically compacted, flooding is not permitted.

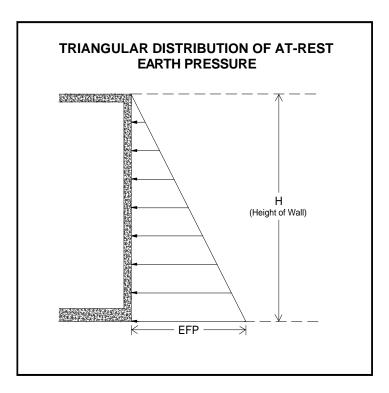
RETAINING WALL DESIGN

Cantilever Retaining Walls

Cantilever retaining walls supporting a level backslope may be designed utilizing a triangular distribution of active earth pressure. Cantilever retaining walls may be designed utilizing the following tables:

Total Height of Retaining Wall (H)	Cantilever Retaining Wall Above the Historically Highest Groundwater Level <u>with</u> Wall Subdrain System Triangular Distribution of Earth Pressure
H < = 10 feet	31 pcf
10 feet < H < = 20 feet	37 pcf

Total Height of Retaining Wall (H)	Cantilever Retaining Wall Below the Historically Highest Groundwater Level <u>without</u> Wall Subdrain System Triangular Distribution of Earth Pressure
20 feet < H < = 60 feet	21.1 pcf soil + 62.4 hydrostatic = 84 pcf



Geotechnologies, Inc.

For this equivalent fluid pressure to be valid, walls which are to be restrained at the top should be backfilled prior to the upper connection being made. Additional active pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures. It should be noted that if the entire wall is not drained, then the hydrostatic pressure must be taken from the ground surface.

Restrained Drained Retaining Walls

Restrained retaining walls extending less than 20 feet below ground surface may be designed to resist a triangular pressure distribution of at-rest earth pressure as indicated in the diagram below. The at-rest pressure for design purposes is 45 pounds per cubic foot. Additional earth pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures.

In addition to the recommended earth pressure, the upper ten feet of the retaining wall adjacent to streets, driveways or parking areas should be designed to resist a uniform lateral pressure of 100 pounds per square foot, acting as a result of an assumed 300 pounds per square foot surcharge behind the walls due to normal street traffic. If the traffic is kept back at least ten feet from the retaining walls, the traffic surcharge may be neglected.

The lateral earth pressures recommended above for retaining walls assume that a permanent drainage system will be installed so that external water pressure will not be developed against the walls. Also, where necessary, the retaining walls should be designed to accommodate any surcharge pressures that may be imposed by existing buildings on the adjacent property.

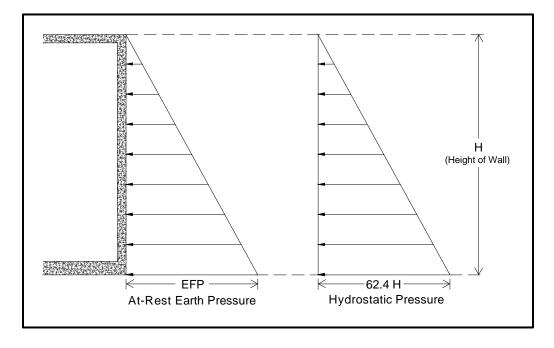
<u>Retaining Wall Drainage</u>

Retaining walls extending less than 20 feet below ground surface should be provided with a subdrain covered with a minimum of 12 inches of gravel, and a compacted fill blanket or other seal at the surface. The onsite geologic materials are acceptable for use as retaining wall backfill as long as they are compacted to a minimum of 95 percent of the maximum density as determined by the most recent revision of ASTM D 1557.

Certain types of subdrain pipe are not acceptable to the various municipal agencies. It is recommended that prior to purchasing subdrainage pipe, the type and brand is cleared with the proper municipal agencies. Subdrainage pipes should outlet to an acceptable location.

Where retaining walls are to be constructed adjacent to property lines there is usually not enough space for emplacement of a standard pipe and gravel drainage system. Under these circumstances, the use of a flat drainage product is acceptable. The City of Los Angeles permits the use of flat-drainage products only in addition to a conventional rock pocket and pipe collection system.

Where shoring will not allow the installation of a standard subdrainage system, outside-the-wall rock pockets may be utilized. The rock pockets with should drain through the wall. The pockets should be a minimum of 12 inches in length, width and depth. The pocket should be filled with gravel. The rock pockets should be spaced no more than 8 feet on center. It should be noted, subterranean car ramp walls should be connected to the drainage system.


Sump Pump Design

The purpose of the recommended retaining wall backdrainage system is to relieve hydrostatic pressure. Groundwater was encountered during exploration at a depth of 47½ to 55 feet below grade and the historically highest groundwater is estimated at a depth of 20 feet below the ground surface.

For retaining walls extending a total length less than 20 feet below the ground surface, the water anticipated from the wall drainage system will be from rainfall, watering and leaky pipes. A pump capacity of 5 gallons per minute is considered sufficient.

Restrained Undrained Retaining Walls

Restrained retaining walls extending deeper than 20 feet below ground surface shall be designed to resist a triangular pressure distribution of at-rest earth pressure and hydrostatic pressure as indicated in the diagram below. The at-rest soils pressure for design purposes is 87 pounds per cubic foot which includes lateral hydrostatic pressure. Additional earth pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures.

In addition to the recommended earth pressure, the upper ten feet of the retaining wall adjacent to streets, driveways or parking areas should be designed to resist a uniform lateral pressure of 100 pounds per square foot, acting as a result of an assumed 300 pounds per square foot surcharge behind the walls due to normal street traffic. If the traffic is kept back at least ten feet from the retaining walls, the traffic surcharge may be neglected.

The lateral earth pressures recommended above for undrained retaining walls assume that a permanent drainage system will not be provided. Where necessary, the retaining walls should be designed to accommodate any surcharge pressures that may be imposed by existing buildings on the adjacent property.

Dynamic (Seismic) Earth Pressure

Retaining walls exceeding 6 feet in height shall be designed to resist the additional earth pressure caused by seismic ground shaking. A triangular pressure distribution should be utilized for the additional seismic loads, with an equivalent fluid pressure of 27.3 pounds per cubic foot. When

using the load combination equations from the building code, the seismic earth pressure should be combined with the lateral active earth pressure for analyses of restrained basement walls under seismic loading condition.

Surcharge from Adjacent Structures

As indicated herein, additional active pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures for retaining walls and shoring design. The adjacent structures to the north and east of the site will, likely, apply a surcharge pressure.

The following surcharge equation provided in the LADBS Information Bulletin Document No. P/BC 2011-83, may be utilized to determine the surcharge loads on basement walls and shoring system for existing structures located within the 1:1 (h:v) surcharge influence zone of the excavation and basement.

Resultant late	eral forc	ce:	$R = (0.3*P*h^2)/(x^2+h^2)$
Location of l	ateral re	esultant:	$d = x^*[(x^2/h^2+1)^*tan^{-1}(h/x)-(x/h)]$
where:			
R	=	resultant lateral force	e measured in pounds per foot of wall width.
Р	=	resultant surcharge l	oads of continuous or isolated footings measured in
pounds per foot of le		pounds per foot of lea	ngth parallel to the wall.
Х	=	distance of resultant load from back face of wall measured in feet.	
h	=	depth below point of application of surcharge loading to top of wall	
footing measured in feet.		feet.	
d = depth of lateral resultant below point of application		ltant below point of application of surcharge loading	

 $\tan^{-1}(h/x) =$ the angle in radians whose tangent is equal to h/x.

The structural engineer and shoring engineer may use this equation to determine the surcharge loads based on the loading of the adjacent structures located within the surcharge influence zone.

Waterproofing

Moisture affecting retaining walls is one of the most common post construction complaints. Poorly applied or omitted waterproofing can lead to efflorescence or standing water inside the building. Efflorescence is a process in which a powdery substance is produced on the surface of the concrete by the evaporation of water. The white powder usually consists of soluble salts such as gypsum, calcite, or common salt. Efflorescence is common to retaining walls and does not affect their strength or integrity.

It is recommended that retaining walls be waterproofed. Waterproofing design and inspection of its installation is not the responsibility of the geotechnical engineer. A qualified waterproofing consultant should be retained in order to recommend a product or method which would provide protection to below grade walls.

Retaining Wall Backfill

Any required backfill should be mechanically compacted in layers not more than 8 inches thick, to at least 95 percent of the maximum density obtainable by the most recent revision of ASTM D 1557 method of compaction. Flooding should not be permitted. Compaction within 5 feet, measured horizontally, behind a retaining structure should be achieved by use of light weight, hand operated compaction equipment.

Proper compaction of the backfill will be necessary to reduce settlement of overlying walks and paving. Some settlement of required backfill should be anticipated, and any utilities supported therein should be designed to accept differential settlement, particularly at the points of entry to the structure.

TEMPORARY EXCAVATIONS

Depending on the foundation type selected, excavations may range from 50 to 65 feet in depth for construction of the subterranean garage levels, structural slab and foundation elements. The excavations are expected to expose fill and dense native soils, which are suitable for vertical excavations up to 5 feet where not surcharged by adjacent traffic or structures. Excavations which will be surcharged by adjacent traffic or structures should be shored.

Where sufficient space is available, temporary unsurcharged embankments could be cut at a uniform 1:1 slope gradient to a maximum vertical height of 27 feet. A uniform sloped excavation is sloped from bottom to top and does not have a vertical component.

Where sloped embankments are utilized, the tops of the slopes should be barricaded to prevent vehicles and storage loads near the top of slope within a horizontal distance equal to the depth of the excavation. If the temporary construction embankments are to be maintained during the rainy season, berms are strongly recommended along the tops of the slopes to prevent runoff water from entering the excavation and eroding the slope faces. Water should not be allowed to pond on top of the excavation nor to flow towards it.

Temporary Dewatering

Currently it is proposed that the structure will extend to a depth up to 60 feet below existing site grades or elevation 250. Groundwater and perched groundwater is anticipated at a depth as shallow as 47½ feet (elevation 264 feet). As a result, up to 14 feet of dewatering is anticipated. A dewatering consultant should be retained for recommendations regarding temporary dewatering methods during construction. No estimate of the dewatering rate has presented in this report.

Where the exposed subgrade is wet, pumping may be encountered. Under these conditions please refer to the "Wet Soils" section of this report.

Dewatering Settlement

Dewatering will occur between elevation 264 to elevation 250 feet above mean sea level. The layer to be dewatered consists of stiff clayey silt that varies from elevation to 270 feet to 250 feet above mean sea level.

Structures whose underlying soils will be dewatered are located on the north, east and south sides of the site. The structures are described as follows:

North (950 North Broadway)

This is an at-grades 1-story high structure with and asphalt-paved parking lot on the east side of the site. The building appears to be constructed of wood and stucco and supported on convention spread footings. The finish floor elevation of the structure is approximately 312 feet above mean sea level.

East (1231 North Spring Street)

A 3 and 4-story high brick building occupies the western side of this property. The structure is likely supported on conventional spread footings. The eastern side and northern side are improved with at-grade paved parking. The site elevation is approximately 301 feet and the finish floor elevation of the structure is approximately 296 feet above mean sea level. The structure is composed of brick and built circa 1920's to 1930's. The structure has been recently remodeled and seismically retrofitted.

South (900 North Broadway "Blossom Plaza")

This is a 5-story, Type V, residential structure with a 3-level basement. The structure was completed around 2016. The structure is supported on ** conventional spread footings. The finish flor of the basement is approximately elevation 277 feet.

Settlement was calculated by assuming the dewatering will occur on the lower portion of the clayey silt layer. The water level of the site vicinity this has been at elevation 250 feet in historic times. It is assumed in the calculation that the settlement of the entire soil above the dewatered layer is complete. The dense sand below the elevation of 250 feet will not settle appreciably. The following settlement due to dewatering is anticipated:

BUILDING	DEWATERING SETTLEMENT (INCHES)	
	TOTAL	DIFFERNTIAL
North (950 North Broadway)	0.2	0.1
East (1231 North Spring Street)	0.2	0.1
South (900 North Broadway "Blossom Plaza")	0.4	0.2

Excavation Observations

It is critical that the soils exposed in the cut slopes are observed by a representative of Geotechnologies, Inc. during excavation so that modifications of the slopes can be made if variations in the geologic material conditions occur. Many building officials require that temporary excavations should be made during the continuous observations of the geotechnical engineer. All excavations should be stabilized within 30 days of initial excavation.

SHORING DESIGN

The following information on the design and installation of the shoring is as complete as possible at this time. It is suggested that Geotechnologies, Inc. review the final shoring plans and specifications prior to bidding or negotiating with a shoring contractor.

One method of shoring would consist of steel soldier piles, placed in drilled holes and backfilled with concrete. The soldier piles may be designed as cantilevers or laterally braced utilizing drilled tied-back anchors or raker braces.

Soldier Piles - Drilled and Poured

Drilled cast-in-place soldier piles should be placed no closer than 2 diameters on center. The minimum diameter of the piles is 18 inches. Structural concrete should be used for the soldier piles below the excavation; lean-mix concrete may be employed above that level. As an alternative, lean-mix concrete may be used throughout the pile where the reinforcing consists of a wideflange section. The slurry must be of sufficient strength to impart the lateral bearing pressure developed by the wideflange section to the geologic materials. For design purposes, an allowable passive value for the geologic materials below the bottom plane of excavation may be assumed to be 500 pounds per square foot per foot. To develop the full lateral value, provisions should be implemented to assure firm contact between the soldier piles and the undisturbed geologic materials.

Groundwater was encountered during exploration at a depth of 47½ feet below grade. Shoring piles will encounter water. Piles placed below the water level require the use of a tremie to place the concrete into the bottom of the hole. A tremie shall consist of a water-tight tube having a diameter of not less than 4 inches connected to a concrete pump. The tube shall be equipped with a device that will close the discharge end and prevent water from entering the tube while it is being charged with concrete. The tremie shall be supported so as to permit free movement of the discharge end over the entire top surface of the work and to permit rapid lowering when necessary to retard or stop the flow of concrete. The discharge end shall be closed at the start of the work to prevent water entering the tube and shall be entirely sealed at all times, except when the concrete is being placed. The tremie tube shall be kept full of concrete. The flow shall be continuous until the work is completed and the resulting concrete seal shall be monolithic and homogeneous. The tip of the tremie tube shall always be kept about five feet below the surface of the concrete and definite steps and safeguards should be taken to insure that the tip of the tremie tube is never raised above the surface of the concrete.

A special concrete mix should be used for concrete to be placed below water. The design shall provide for concrete with a strength p.s.i. of 1,000 over the initial job specification. An admixture that reduces the problem of segregation of paste/aggregates and dilution of paste shall be included. The slump shall be commensurate to any research report for the admixture, provided that it shall also be the minimum for a reasonable consistency for placing when water is present.

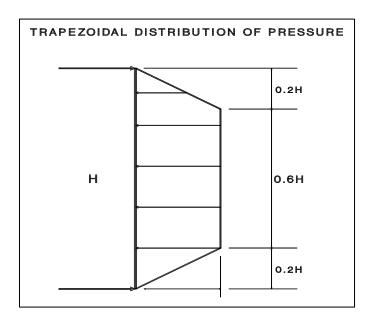
Casing may be required should caving be experienced in the granular (saturated) geologic materials. If casing is used, extreme care should be employed so that the pile is not pulled apart as the casing is withdrawn. At no time should the distance between the surface of the concrete and the bottom of the casing be less than 5 feet.

The use of drilling polymer may also be utilized for mitigation of groundwater and caving during the drilling of soldier piles. If drilling polymer is utilized during construction, concrete should be tremied into the hole to displace the polymer fluid during the concrete pouring operation. At no time should the distance between the end of the tremie pipe and the top of the concrete be less than 5 feet.

The frictional resistance between the soldier piles and retained geologic material may be used to resist the vertical component of the anchor load. The coefficient of friction may be taken as 0.35 based on uniform contact between the steel beam and lean-mix concrete and retained earth. The portion of soldier piles below the plane of excavation may also be employed to resist the downward loads. The downward capacity may be determined using a frictional resistance of 450 pounds per square foot. The minimum depth of embedment for shoring piles is 5 feet below the bottom of the footing excavation or 7 feet below the bottom of excavated plane whichever is deeper.

Lagging

Soldier piles and anchors should be designed for the full anticipated pressures. Due to arching in the geologic materials, the pressure on the lagging will be less. It is recommended that the lagging should be designed for the full design pressure but be limited to a maximum of 400 pounds per square foot. It is recommended that a representative of this firm observe the installation of lagging to insure uniform support of the excavated embankment.


Lateral Pressures

Cantilevered shoring supporting a level backslope may be designed utilizing a triangular distribution of pressure as indicated in the following table:

HEIGHT OF SHORING "H" (feet)	EQUIVALENT FLUID PRESSURE (pounds per cubic foot)
less than 30	31
30 to 40	32
40 to 50	33
50 to 70	34

Where a combination of sloped embankment and shoring is utilized, the pressure will be greater and must be determined for each combination. Additional active pressure should be applied where the shoring will be surcharged by adjacent traffic or structures. Where a combination of sloped embankment and shoring is utilized, the pressure will be greater and must be determined for each combination.

A trapezoidal distribution of lateral earth pressure would be appropriate where shoring is to be restrained at the top by bracing or tie backs, with the trapezoidal distribution as shown in the diagram below.

Restrained shoring supporting a level backslope may be designed utilizing a trapezoidal distribution of pressure as indicated in the following table:

HEIGHT OF SHORING "H" (feet)	DESIGN SHORING FOR (Where H is the height of the wall)
Less than 30	20Н
30 to 40	21H
40 to 50	21H
50 to 70	22Н

Where a combination of sloped embankment and shoring is utilized, the pressure will be greater and must be determined for each combination. Additional active pressure should be applied where the shoring will be surcharged by adjacent traffic or structures. Where a combination of sloped embankment and shoring is utilized, the pressure will be greater and must be determined for each combination.

Tied-Back Anchors

Tied-back anchors may be used to resist lateral loads. Friction anchors are recommended. For design purposes, it may be assumed that the active wedge adjacent to the shoring is defined by a plane drawn 35 degrees with the vertical through the bottom plane of the excavation. Friction anchors should extend a minimum of 20 feet beyond the potentially active wedge. Anchors should be placed at least 6 feet on center to be considered isolated.

Drilled friction anchors may be designed for a skin friction of 550 pounds per square foot. Only the frictional resistance developed beyond the active wedge would be effective in resisting lateral loads. Where belled anchors are utilized, the capacity of belled anchors may be designed by applying the skin friction over the surface area of the bonded anchor shaft. The diameter of the bell may be utilized as the diameter of the bonded anchor shaft when determining the surface area. This implies that in order for the belled anchor to fail, the entire parallel soil column must also fail.

Depending on the techniques utilized, and the experience of the contractor performing the installation, it is anticipated that a skin friction of 2,500 pounds per square foot could be utilized for post-grouted anchors. Only the frictional resistance developed beyond the active wedge would be effective in resisting lateral loads.

Anchor Installation

Tied-back anchors may be installed between 20 and 40 degrees below the horizontal. Caving of the anchor shafts, particularly within saturated sand deposits, should be anticipated and the following provisions should be implemented in order to minimize such caving. The anchor shafts should be filled with concrete by pumping from the tip out, and the concrete should extend from the tip of the anchor to the active wedge. In order to minimize the chances of caving, it is recommended that the portion of the anchor shaft within the active wedge be backfilled with

sand before testing the anchor. This portion of the shaft should be filled tightly and flush with the face of the excavation. The sand backfill should be placed by pumping; the sand may contain a small amount of cement to facilitate pumping.

Tieback Anchor Testing

At least 10 percent of the anchors should be selected for "quick", 200 percent tests. It is recommended that at least three anchors be selected for 24-hour, 200 percent tests. It is recommended that the 24-hour tests be performed prior to installation of additional tiebacks. The purpose of the 200 percent tests is to verify the friction value assumed in design. The anchors should be tested to develop twice the assumed friction value. Where satisfactory tests are not achieved on these initial anchors, the anchor diameter and/or length should be increased until satisfactory test results are obtained.

The total deflection during the 24-hour 200 percent test should not exceed 12 inches. During the 24-hour tests, the anchor deflection should not exceed 0.75 inches measured after the 200 percent test load is applied.

For the "quick" 200 percent tests, the 200 percent test load should be maintained for 30 minutes. The total deflection of the anchor during the 200 percent quick tests should not exceed 12 inches; the deflection after the 200 percent load has been applied should not exceed 0.25 inch during the 30-minute period.

All of the remaining anchors should be tested to at least 150 percent of design load. The total deflection during the 150 percent test should not exceed 12 inches. The rate of creep under the 150 percent test load should not exceed 0.1 inch over a 15 minute period in order for the anchor to be approved for the design loading.

After a satisfactory test, each anchor should be locked-off at the design load. This should be verified by rechecking the load in the anchor. The load should be within 10 percent of the design load. Where satisfactory tests are not attained, the anchor diameter and/or length should be increased or additional anchors installed until satisfactory test results are obtained. Where post-grouted anchors are utilized, additional post-grouting may be required. The installation and testing of the anchors should be observed by a representative of the soils engineer.

Raker Brace Foundations

An allowable bearing pressure of 3,000 pounds per square foot may be used for the design a raker foundations embedded in granular soil deeper than 60 feet below ground surface. This bearing pressure is based on a raker foundation a minimum of 4 feet in width and length as well as 4 feet in depth. The base of the raker foundations should be horizontal. Care should be employed in the positioning of raker foundations so that they do not interfere with the foundations for the proposed structure.

Deflection

It is difficult to accurately predict the amount of deflection of a shored embankment. It should be realized that some deflection will occur. It is estimated that the deflection could be on the order of ¹/₂ inch at the top of the shored embankment. If greater deflection occurs during construction, additional bracing may be necessary to minimize settlement of adjacent buildings and utilities in adjacent street and alleys. If desired to reduce the deflection, a greater active pressure could be used in the shoring design.

The City of Los Angeles Department of Building and Safety requires limiting shoring deflection to ¹/₂ inch at the top of the shored embankment where a structure is within a 1:1 plane projected up from the base of the excavation. A maximum deflection of 1-inch is allowed provided there are no structures within a 1:1 plane drawn upward from the base of the excavation.

Monitoring

Because of the depth of the excavation, some mean of monitoring the performance of the shoring system is suggested. The monitoring should consist of periodic surveying of the lateral and vertical locations of the tops of all soldier piles and the lateral movement along the entire lengths of selected soldier piles. Also, some means of periodically checking the load on selected anchors will be necessary, where applicable.

Some movement of the shored embankments should be anticipated as a result of the relatively deep excavation. It is recommended that photographs of the existing buildings on the adjacent properties be made during construction to record any movements for use in the event of a dispute.

Shoring Observations

It is critical that the installation of shoring is observed by a representative of Geotechnologies, Inc. Many building officials require that shoring installation should be performed during continuous observation of a representative of the geotechnical engineer. The observations insure that the recommendations of the geotechnical report are implemented and so that modifications of the recommendations can be made if variations in the geologic material or groundwater conditions warrant. The observations will allow for a report to be prepared on the installation of shoring for the use of the local building official, where necessary.

OUTDOOR CONCRETE FLATWORK

Outdoor concrete flatwork should be a minimum of 4 inches in thickness. Outdoor concrete flatwork should be cast over undisturbed alluvial soils or properly controlled fill materials. Any geologic materials loosened or over-excavated should be wasted from the site or properly compacted to 95 percent of the maximum dry density.

Concrete Crack Control

For standard control of concrete cracking, a maximum crack control joint spacing of 10 feet should not be exceeded. Lesser spacings would provide greater crack control. Joints at curves and angle points are recommended. The crack control joints should be installed as soon as practical following concrete placement. Crack control joints should extend a minimum depth of one-fourth the slab thickness. Construction joints should be designed by a structural engineer.

Complete removal of the existing fill soils beneath outdoor flatwork such as walkways or patio areas, is not required, however, due to the rigid nature of concrete, some cracking, a shorter design life and increased maintenance costs should be anticipated. In order to provide uniform support beneath the flatwork it is recommended that a minimum of 12 inches of the exposed subgrade beneath the flatwork be scarified and recompacted to 95 percent relative compaction.

Flatwork Reinforcing

Outdoor flatwork should be reinforced with a minimum of #3 steel bars on 18-inch centers each way.

PAVEMENTS

Prior to placing paving, the existing grade should be scarified to a depth of 12 inches, moistened as required to obtain optimum moisture content, and recompacted to 90 percent of the maximum density as determined by the most recent revision of ASTM D 1557. The client should be aware that removal of all existing fill in the area of new paving is not required, however, pavement constructed in this manner will most likely have a shorter design life and increased maintenance costs.

Due to a wide variation which may occur during the grading process, it is recommended that R-value tests be performed near the completion of grading in order to ascertain the subgrade conditions prior to paving. The recommended paving sections shall be considered preliminary and are subject revision. For preliminary design purposes, an R-value of 30 was assumed. A preliminary paving section is provided in the following table for traffic indexes of 4, 6, and 8:

Service	Asphalt Pavement Thickness Inches	Base Course Inches
Passenger Cars (TI=4)	3	5
Moderate Truck (TI=6)	4	8
Heavy Trucks (TI=8)	5	11

Aggregate base should be compacted to a minimum of 95 percent of the most recent revision of ASTM D 1557 laboratory maximum dry density. Base materials should consist of Crushed Aggregate Base in conformance with Section 200-2.2 of the most recent edition of "Standard Specifications for Public Works Construction", (Green Book). Crushed Misc. Base is addressed in Section 200-2.4.

Concrete paving may be used on the project. Based on the highway design manual for Traffic Index of 6, concrete paving should be 6 inches of concrete over 4 inches of compacted base. A subgrade modulus of 150 pounds per cubic inch may be assumed for design of concrete paving. For standard control of concrete cracking, a maximum crack control joint spacing of 10 feet should not be exceeded. Lesser spacings would provide greater crack control. Joints at curves and angle points are recommended. The crack control joints should be installed as soon as practical following concrete placement. Crack control joints should extend a minimum depth of one-fourth the slab thickness. Concrete paving should be reinforced with a minimum of #4 steel bars on 16-inch centers each way. Construction joints should be designed by a structural engineer.

The occurrence of concrete cracking may be reduced and/or controlled by limiting the slump of the concrete used, proper concrete placement and curing, and by placement of crack control joints at reasonable intervals, in particular, where re-entrant slab corners occur.

The performance of pavement is highly dependent upon providing positive surface drainage away from the edges. Ponding of water on or adjacent to pavement can result in saturation of the subgrade materials and subsequent pavement distress. If planter islands are planned, the perimeter curb should extend a minimum of 12 inches below the bottom of the aggregate base.

SITE DRAINAGE

Proper surface drainage is critical to the future performance of the project. Saturation of a soil can cause it to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. Proper site drainage should be maintained at all times.

All site drainage, with the exception of any required to disposed of onsite by stormwater regulations, should be collected and transferred to the street in non-erosive drainage devices. The proposed structure should be provided with roof drainage. Discharge from downspouts, roof drains and scuppers should not be permitted on unprotected soils within five feet of the building perimeter. Drainage should not be allowed to pond anywhere on the site, and especially not against any foundation or retaining wall. Drainage should not be allowed to flow uncontrolled over any descending slope. Planters which are located within a distance equal to the depth of a retaining wall should be sealed to prevent moisture adversely affecting the wall. Planters which are located within five feet of a foundation should be sealed to prevent moisture affecting the earth materials supporting the foundation.

STORMWATER DISPOSAL

Introduction

Recently regulatory agencies have been requiring the disposal of a certain amount of stormwater generated on a site by infiltration into the site soils. Increasing the moisture content of a soil can cause it to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. This means that any overlying structure, including buildings, pavements and concrete flatwork, could sustain damage due to saturation of the subgrade soils. Structures serviced by subterranean levels could be adversely impacted by stormwater disposal by increasing the design fluid pressures on retaining walls and causing leaks in the walls. Proper site drainage is critical to the performance of any structure in the built environment.

Infiltration of stormwater into onsite soils is not considered feasible by this firm. Where percolation of stormwater into the subgrade soils is not advisable, most Building Officials have allowed the stormwater to be filtered through soils in planter areas. Once the water has been filtered through a planter it may be released into the storm drain system. It is recommended that overflow pipes are incorporated into the design of the discharge system in the planters to prevent flooding. In addition, the planters shall be sealed and waterproofed to prevent leakage. Please be advised that adverse impact to landscaping and periodic maintenance may result due to excessive water and contaminants discharged into the planters.

DESIGN REVIEW

Engineering of the proposed project should not begin until approval of the geotechnical report by the Building Official is obtained in writing. Significant changes in the geotechnical recommendations may result during the building department review process.

It is recommended that the geotechnical aspects of the project be reviewed by this firm during the design process. This review provides assistance to the design team by providing specific recommendations for particular cases, as well as review of the proposed construction to evaluate whether the intent of the recommendations presented herein are satisfied.

CONSTRUCTION MONITORING

Geotechnical observations and testing during construction are considered to be a continuation of the geotechnical investigation. It is critical that this firm review the geotechnical aspects of the project during the construction process. Compliance with the design concepts, specifications or recommendations during construction requires review by this firm during the course of construction. All foundations should be observed by a representative of this firm prior to placing concrete or steel. Any fill which is placed should be observed, tested, and verified if used for engineered purposes. Please advise Geotechnologies, Inc. at least twenty-four hours prior to any required site visit.

If conditions encountered during construction appear to differ from those disclosed herein, notify Geotechnologies, Inc. immediately so the need for modifications may be considered in a timely manner.

It is the responsibility of the contractor to ensure that all excavations and trenches are properly sloped or shored. All temporary excavations should be cut and maintained in accordance with applicable OSHA rules and regulations.

EXCAVATION CHARACTERISTICS

The exploration performed for this investigation is limited to the geotechnical excavations described. Direct exploration of the entire site would not be economically feasible. The owner, design team and contractor must understand that differing excavation and drilling conditions may

be encountered based on boulders, gravel, oversize materials, groundwater and many other conditions. Fill materials, especially when they were placed without benefit of modern grading codes, regularly contain materials which could impede efficient grading and drilling. Excavation and drilling in these areas may require full size equipment and coring capability. The contractor should be familiar with the site and the geologic materials in the vicinity.

CLOSURE AND LIMITATIONS

The purpose of this report is to aid in the design and completion of the described project. Implementation of the advice presented in this report is intended to reduce certain risks associated with construction projects. The professional opinions and geotechnical advice contained in this report are sought because of special skill in engineering and geology and were prepared in accordance with generally accepted geotechnical engineering practice. Geotechnologies, Inc. has a duty to exercise the ordinary skill and competence of members of the engineering profession. Those who hire Geotechnologies, Inc. are not justified in expecting infallibility, but can expect reasonable professional care and competence.

The recommendations of this report pertain only to the site investigated and are based upon the assumption that the geologic conditions do not deviate from those disclosed in the investigation. If any variations are encountered during construction, or if the proposed construction will differ from that anticipated herein, Geotechnologies, Inc. should be notified so that supplemental recommendations can be prepared.

This report is issued with the understanding that it is the responsibility of the owner, or the owner's representatives, to ensure that the information and recommendations contained herein are brought to the attention of the project architect and engineer and are incorporated into the plans. The owner is also responsible to see that the contractor and subcontractors carry out the geotechnical recommendations during construction.

The findings of this report are valid as of the date of this report. However, changes in the conditions of a property can occur with the passage of time, whether they are due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside control of this firm. Therefore, this report is subject to review and should not be relied upon after a period of three years.

Geotechnical observations and testing during construction is considered to be a continuation of the geotechnical investigation. It is, therefore, most prudent to employ the consultant performing the initial investigative work to provide observation and testing services during construction. This practice enables the project to flow smoothly from the planning stages through to completion.

Should another geotechnical firm be selected to provide the testing and observation services during construction, that firm should prepare a letter indicating their assumption of the responsibilities of geotechnical engineer of record. A copy of the letter should be provided to the regulatory agency for review. The letter should acknowledge the concurrence of the new geotechnical engineer with the recommendations presented in this report.

The City of Los Angeles does not require corrosion testing. However, if corrosion sensitive improvements are planned, it is recommended that a comprehensive corrosion study should be commissioned. The study will develop recommendations to avoid premature corrosion of buried pipes and concrete structures in direct contact with the soils.

Geotechnologies, Inc. 439 Western Avenue, Glendale, California 91201-2837 • Tel: 818.240.9600 • Fax: 818.240.9675 www.geoteq.com

EXCLUSIONS

Geotechnologies, Inc. does not practice in the fields of methane gas, radon gas, environmental engineering, waterproofing, dewatering organic substances or the presence of corrosive soils or wetlands which could affect the proposed development including mold and toxic mold. Nothing in this report is intended to address these issues and/or their potential effect on the proposed development. A competent professional consultant should be retained in order to address environmental issues, waterproofing, organic substances and wetlands which might affect the proposed development.

GEOTECHNICAL TESTING

Classification and Sampling

The soil is continuously logged by a representative of this firm and classified by visual examination in accordance with the Unified Soil Classification system. The field classification is verified in the laboratory, also in accordance with the Unified Soil Classification System. Laboratory classification may include visual examination, Atterberg Limit Tests and grain size distribution. The final classification is shown on the excavation logs.

Samples of the geologic materials encountered in the exploratory excavations were collected and transported to the laboratory. Undisturbed samples of soil are obtained at frequent intervals. Unless noted on the excavation logs as an SPT sample, samples acquired while utilizing a hollow-stem auger drill rig are obtained by driving a thin-walled, California Modified Sampler with successive 30-inch drops of a 140-pound hammer. The soil is retained in brass rings of 2.50 inches outside diameter and 1.00 inch in height. The central portion of the samples are stored in close fitting, waterproof containers for transportation to the laboratory. Samples noted on the excavation logs as SPT samples are obtained in accordance with the most recent revision of ASTM D 1586. Samples are retained for 30 days after the date of the geotechnical report.

Moisture and Density Relationships

The field moisture content and dry unit weight are determined for each of the undisturbed soil samples, and the moisture content is determined for SPT samples by the most recent revision of ASTM D 4959 or ASTM D 4643. This information is useful in providing a gross picture of the soil consistency between exploration locations and any local variations. The dry unit weight is determined in pounds per cubic foot and shown on the "Excavation Logs", A-Plates. The field moisture content is determined as a percentage of the dry unit weight.

Direct Shear Testing

Shear tests are performed by the most recent revision of ASTM D 3080 with a strain controlled, direct shear machine manufactured by Soil Test, Inc. or a Direct Shear Apparatus manufactured by GeoMatic, Inc. Each sample is sheared under varying confining pressures in order to determine the Mohr-Coulomb shear strength parameters of the cohesion intercept and the angle of internal friction. Samples are generally tested in an artificially saturated condition. Depending upon the sample location and future site conditions, samples may be tested at field moisture content. The results are plotted on the "Shear Test Diagram," B-Plates.

The most recent revision of ASTM 3080 limits the particle size to 10 percent of the diameter of the direct shear test specimen. The sheared sample is inspected by the laboratory technician running the test. The inspection is performed by splitting the sample along the sheared plane and observing the soils exposed on both sides. Where oversize particles are observed in the shear plane, the results are discarded and the test run again with a fresh sample.

Consolidation Testing

Settlement predictions of the soil's behavior under load are made on the basis of the consolidation tests using the most recent revision of ASTM D 2435. The consolidation

apparatus is designed to receive a single one-inch high ring. Loads are applied in several increments in a geometric progression, and the resulting deformations are recorded at selected time intervals. Porous stones are placed in contact with the top and bottom of each specimen to permit addition and release of pore fluid. Samples are generally tested at increased moisture content to determine the effects of water on the bearing soil. The normal pressure at which the water is added is noted on the drawing. Results are plotted on the "Consolidation Test," C-Plates.

Laboratory Compaction Characteristics

The maximum dry unit weight and optimum moisture content of a soil are determined by use of the most recent revision of ASTM D 1557. A soil at a selected moisture content is placed in five layers into as mold of given dimensions, with each layer compacted by 25 blows of a 10 pound hammer dropped from a distance of 18 inches subjecting the soil to a total compactive effort of about 56,000 pounds per cubic foot. The resulting dry unit weight is determined. The procedure is repeated for a sufficient number of moisture contents to establish a relationship between the dry unit weight and the water content of the soil. The data when plotted represent a curvilinear relationship known as the compaction curve. The values of optimum moisture content and modified maximum dry unit weight are determined from the compaction curve. Results are presented in Plate D of this report.

Expansion Index Testing

The expansion tests performed on the remolded samples are in accordance with the Expansion Index testing procedures, as described in the most recent revision of ASTM D4829. The soil sample is compacted into a metal ring at a saturation degree of 50 percent. The ring sample is then placed in a consolidometer, under a vertical confining pressure of 1 lbf/square inch and inundated with distilled water. The deformation of the specimen is recorded for a period of 24 hour or until the rate of deformation becomes less than 0.0002 inches/hour, whichever occurs

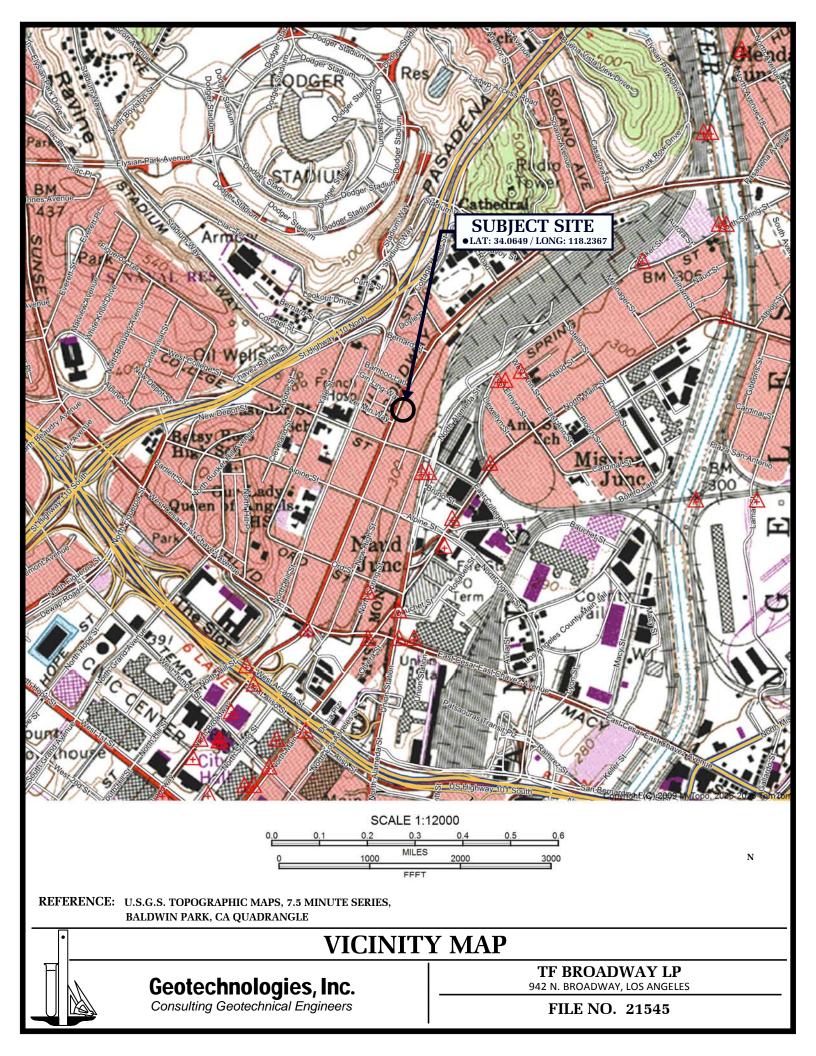
first. The expansion index, EI, is determined by dividing the difference between final and initial height of the ring sample by the initial height, and multiplied by 1,000. Results are presented in Plate D of this report.

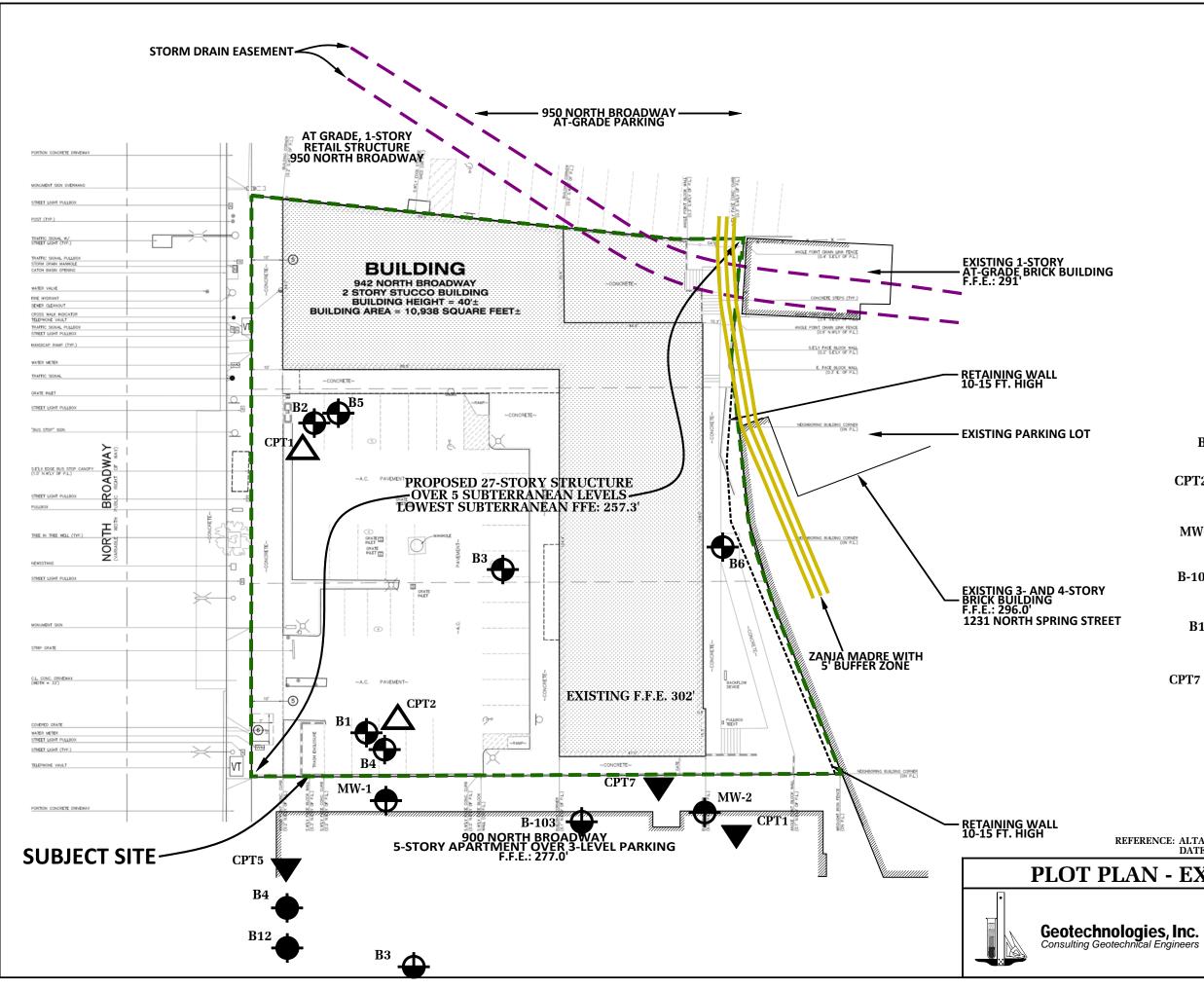
Grain Size Distribution

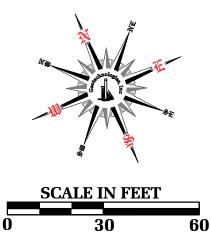
These tests cover the quantitative determination of the distribution of particle sizes in soils. Sieve analysis is used to determine the grain size distribution of the soil larger than the Number 200 sieve. The most recent revision of ASTM D 422 is used to determine particle sizes smaller than the Number 200 sieve. Results from the Number 200 sieve test are presented in Plate E of this report.

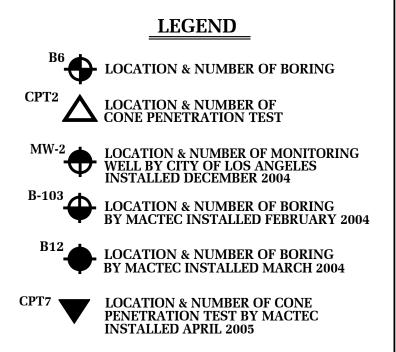
Atterberg Limits

ASTM D 4318 is used to determine the liquid limits, plastic limits, and plasticity index of a soil. These test methods are used to characterize the fine grained fractions of the soil. Results from Atterberg Limits tests are presented in Plate F of this report.

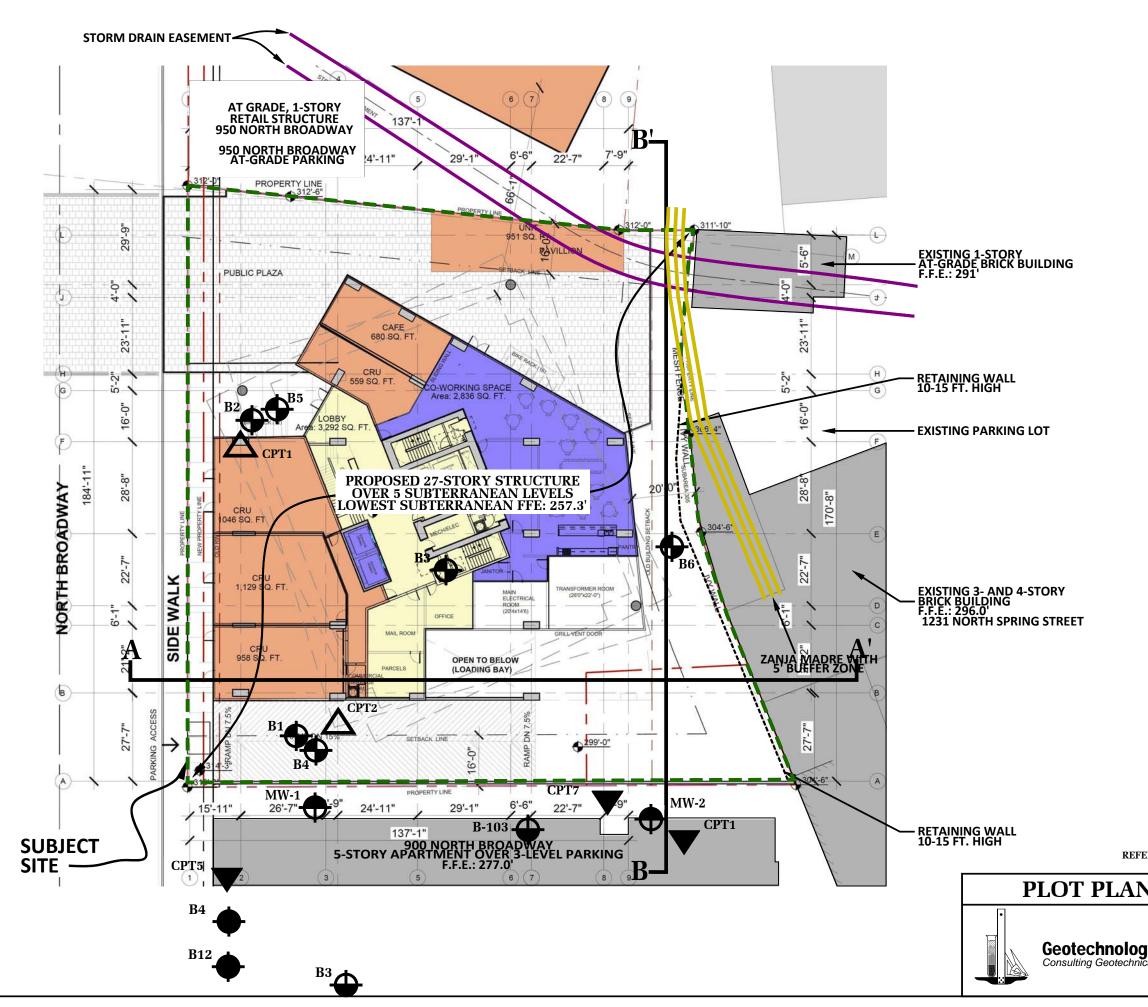

REFERENCES

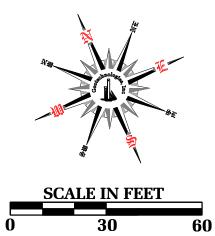

- AMEC Environment and Infrastructure, Inc. March 1, 2013, Report of Geotechnical Investigation, Proposed Chinatown Blossom Plaza Project. 900 North Broadway, Los Angeles, CA, Project No 4953-13-0061.
- AMEC Environment and Infrastructure, Inc., dated March 26, 2013, Supplemental Geotechnical Investigation, Proposed Chinatown Blossom Plaza Project. 900 North Broadway, Los Angeles, California, Project No 4953-13-0061.
- Bray, J. D. and Sancio, R. B. (2006), Assessment of the liquefaction susceptibility of fine grained soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 9, pp. 1165-1177.
- California Geological Survey, 2008, Guidelines for Evaluation and Mitigation of Seismic Hazards in California, Special Publication 117A.
- California Geological Survey, 2017, Earthquake Zones of Required Investigation, Los Angeles Quadrangle, map scale 1:24,000.
- California Department of Conservation, Division of Mines and Geology, 1998 (Revised 2006), Seismic Hazard Zone Report of the Los Angeles 7½-Minute Quadrangle, Los Angeles County, California., C.D.M.G. Seismic Hazard Zone Report 026, map scale 1:24,000.
- California Department of Conservation, Division of Mines and Geology, 1999, Seismic Hazard Zones Map, Los Angeles 7¹/₂-minute Quadrangle, CDMG Seismic Hazard Zone Mapping Act of 1990.
- City of Los Angeles Bureau of Engineering Department of Public Works, 2018, website: http://navigatela.lacity.org/navigatela/.
- Dibblee, T.W., Jr., 1989, Geologic Map of the Los Angeles Quadrangle, Dibblee Foundation Map DF-22. Map scale 1:24,000.
- Division of Oil Gas and Geothermal Resources (DOGGR), 2018, Well Finder Website, Los Angeles Basin, website: maps.conservation.ca.gov/doggr/index.html#close.
- Geosyntec Consultants, Report dated May 4, 2016, Addendum No. 1, Final Compaction Report and Record of Related Geotechnical Observations- Blossom Plaza, Project No HL1442.
- Idriss, I. M., and R. W. Boulanger, 2008, Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, EERI Publication MNO-12.

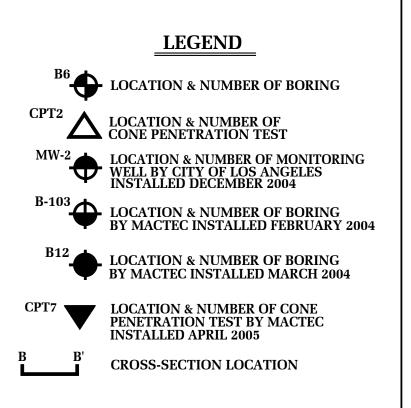



REFERENCES - continued

- Ishihara, K, 1985, Stability of natural deposits during earthquakes. Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 12-16, August, pp. 321-376.
- Lamar, D.L., Geology of the Elysian Park-Repetto Hills Area, Los Angeles County, California , California Division of Mines and Geology Special Report 101. 45 pages.
- Leighton and Associates, Inc., 1990, Technical Appendix to the Safety Element of the Los Angeles County General Plan: Hazard Reduction in Los Angeles County.
- O'Rourke, T. D., and Pease, J. W., 1997, Mapping Liquefaction Layer Thickness for Seismic Hazard Assessment. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(1): 46-56.
- United States Geological Survey, 2014, U.S.G.S. Unified Hazard Tool, http://earthquake.usgs.gov/hazards/interactive/.
- United States Geological Survey, 2018, U.S.G.S. Ground Motion Parameter Calculator (Version 5.1.0). http://earthquake.usgs.gov/hazards/designmaps/.
- U.S. Department of the Interior, U.S. Geological Survey, Preliminary Geologic Map of the Los Angeles 30' x 60' Quadrangle, Southern California, Version 1.0, 2005, Compiled by Robert F. Yerkes and Russell H. Campbell.
- Yerkes, R.F., Tinsley, J.C., and Williams, K.M., Geologic Aspects of Tunneling in the Los Angeles Area, United States Geological Survey MF-866, 66 pages.
- Youd, T. L., Garris, C. T., 1995, Liquefaction-Induced Ground-Surface Disruption. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 121(11): 805-808.
- Youd, T. L., Hansen, C. M., and Bartlett, S. F., 2002, Revised Multilinear Equations for Prediction of Lateral Spread Displacement. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, Vol. 128: 1007-1017.

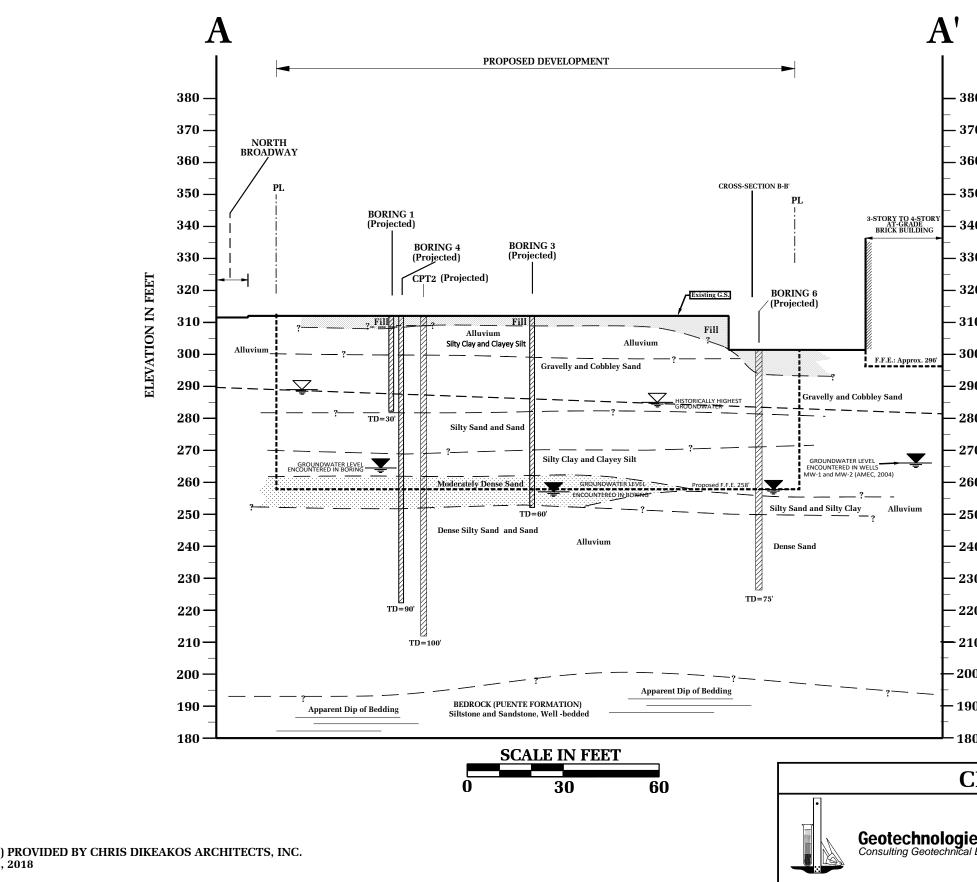





ERENCE: ALTA/ACSM LAND TITLE SURVEY PROVIDED BY OKO ENGINEERING, INC. DATED SEPTEMBER 14, 2015			
N - EXISTING DEVELOPMENT			
	TF BROADWAY LP 942 N. BROADWAY, LOS ANGELES		
gies, Inc.	FILE No. 21545	DRAWN BY: TC	

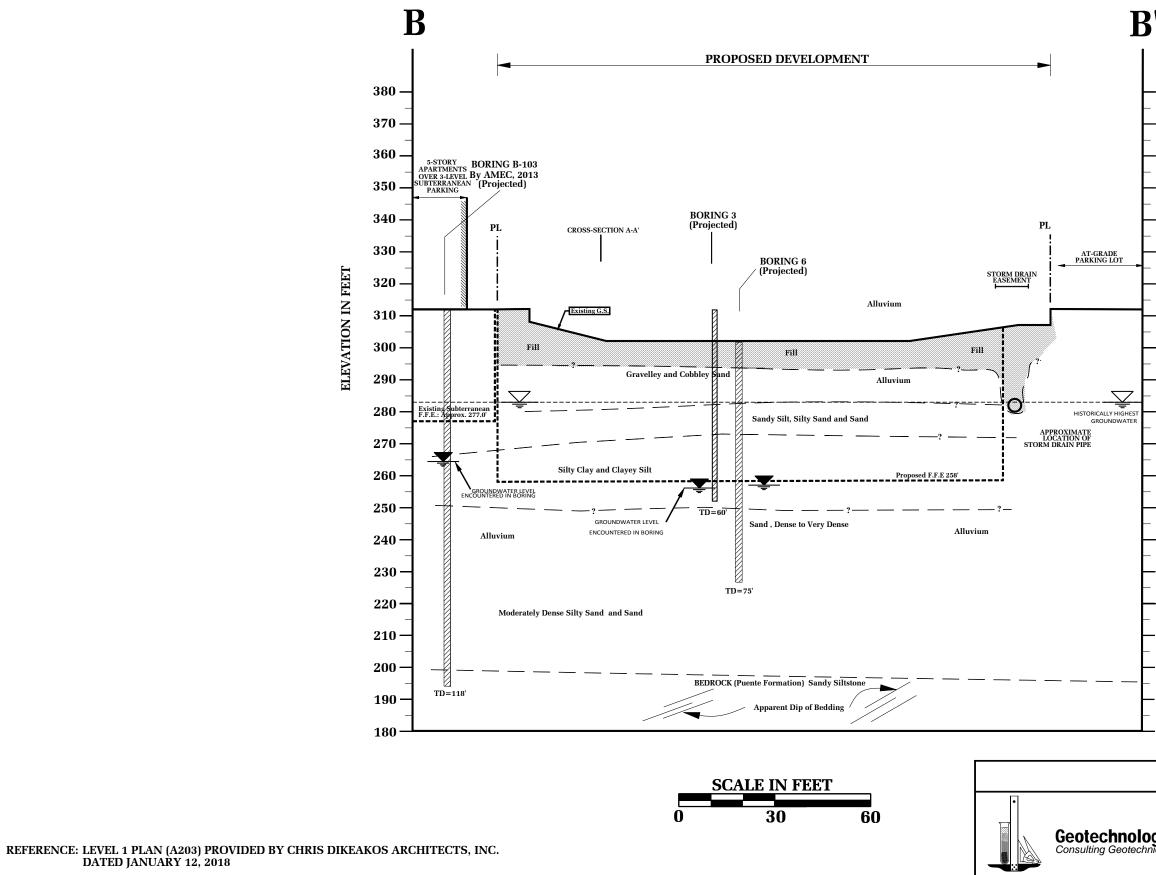
DATE: July 2018

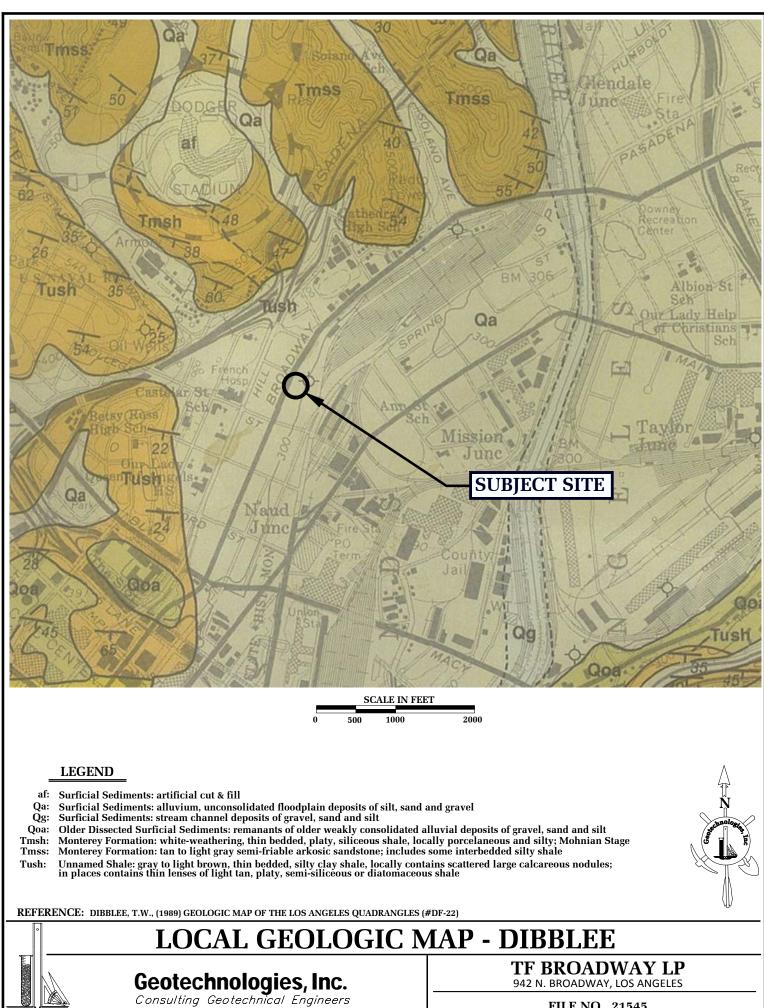
DRAWN BY: TC

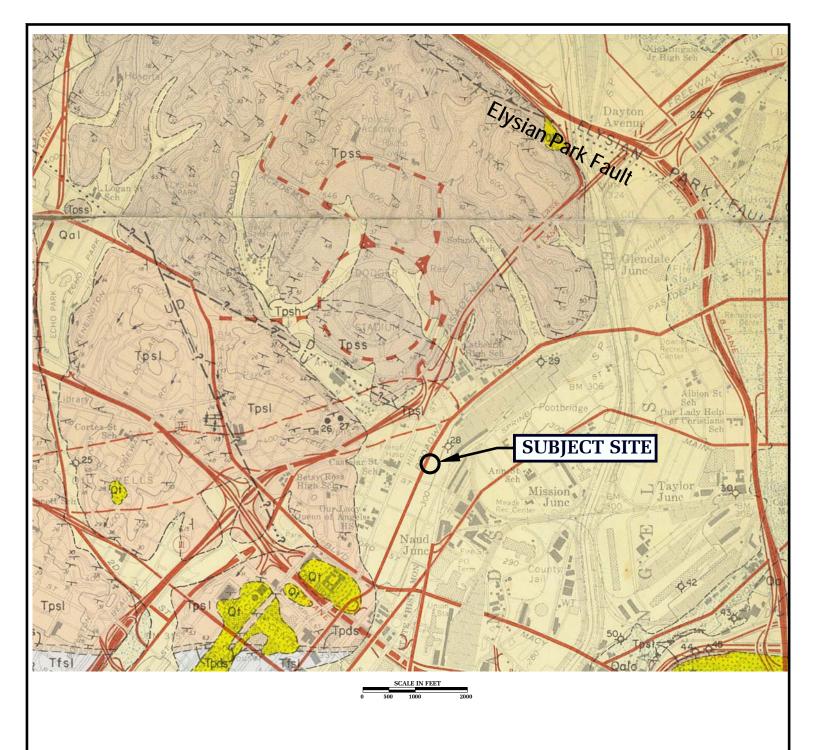


REFERENCE: LEVEL 1 PLAN (A203) PROVIDED BY CHRIS DIKEAKOS ARCHITECTS, INC. DATED JANUARY 12, 2018

N - PROPOSED DEVELOPMENT			
TF BROADWAY LP 942 N. BROADWAY, LOS ANGELES			
gies, Inc. ical Engineers	FILE No. 21545	DRAWN BY: TC	
	DATE: July 2018		


<u>/N67W</u>


REFERENCE: LEVEL 1 PLAN (A203) PROVIDED BY CHRIS DIKEAKOS ARCHITECTS, INC. DATED JANUARY 12, 2018


- 380 - 370 - 360 - 350 - 350 - 340 - 330 - 320 - 310 - 300 - 290 - 280 - 270		
- 260 - 250 - 240		
- 230 - 220 - 210 - 200		
- 190 - 180		
CROSS-	SECTION A-A'	
	TF BROAI 942 N. BROADWA	
Dgies, Inc. Inical Engineers	FILE No. 21545	DRAWN BY: TC
	DATE: Ap	ril 2018

<u>/S23W</u>

1		
- 380		
- 370		
- 360		
- 350		
- 340		
- 330		
– 320 ELEV		
ELEVATION IN FEET		
- 300 Z		
– 290 E		
- 280		
- 270		
- 260		
- 250		
- 240		
- 230		
- 220		
- 210		
- 200		
- 190		
- 180		
CROSS-SECTION B-B'		
	TF BROAI 942 N. BROADWA	
gies, Inc.	FILE No. 21545	DRAWN BY: TC
	DATE: April 2018	

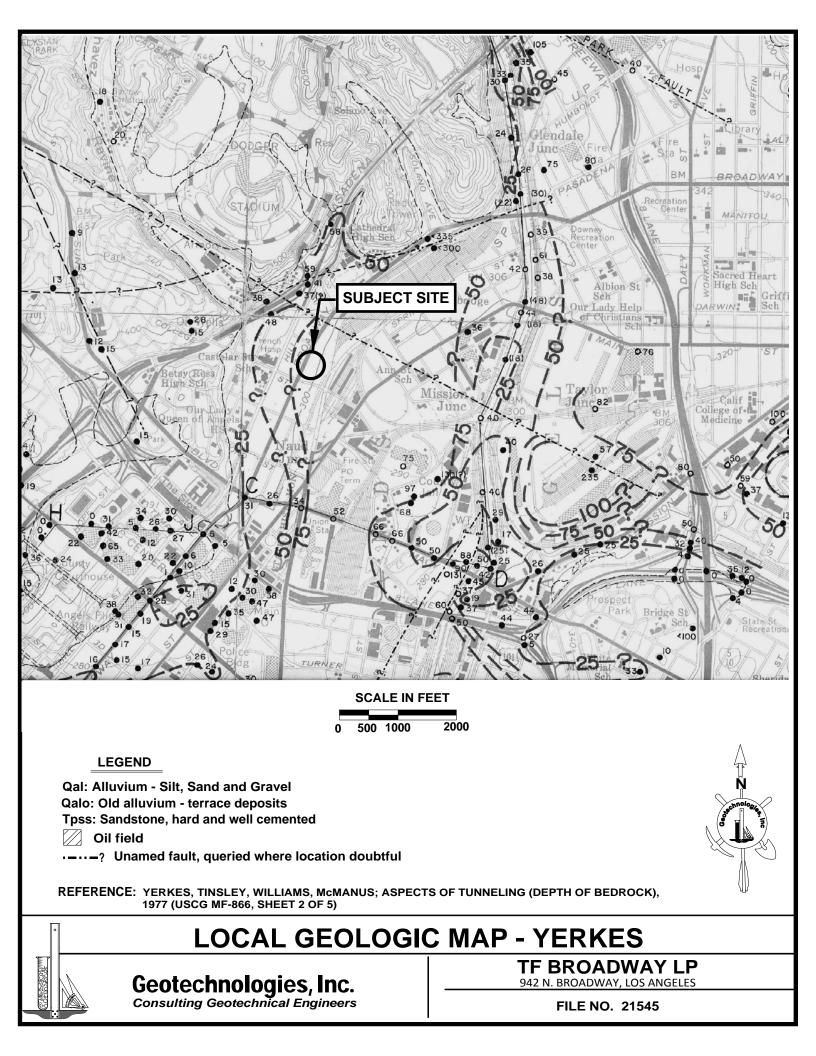
LEGEND

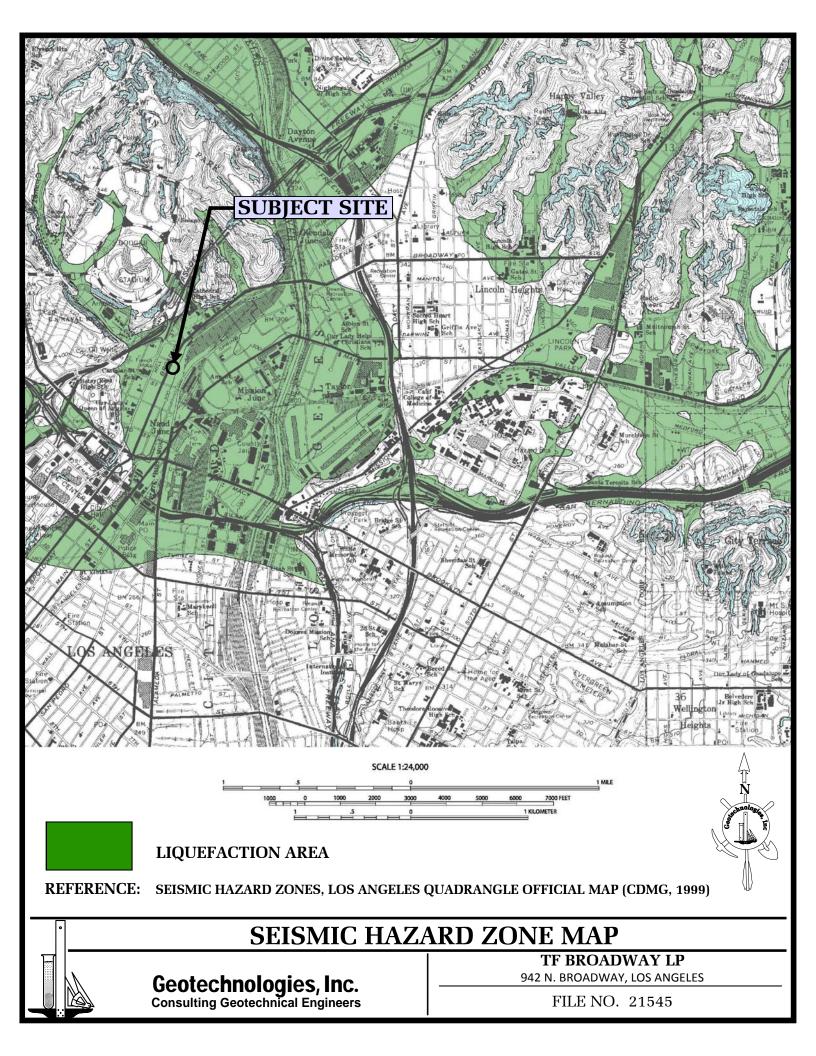
Qal: Alluvial - silt, sand & gravel

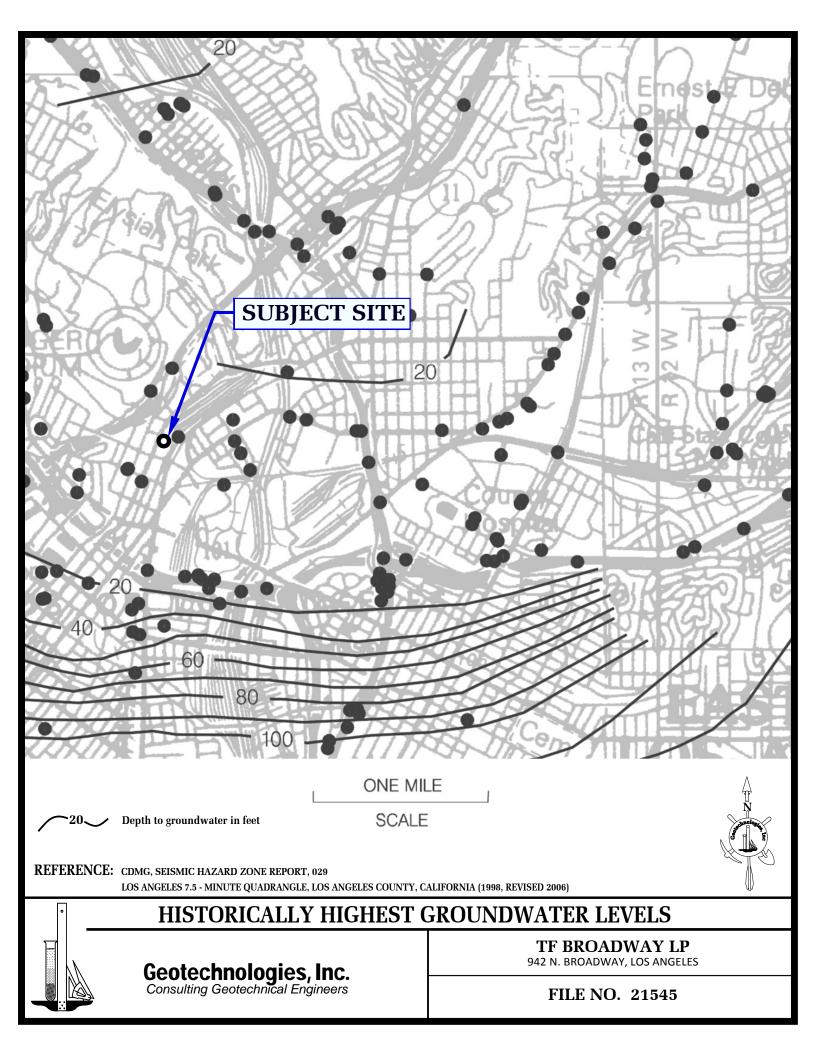
Qalo: Old Alluvium - silt, sand & gravel forming dissected alluvial plain and alluvial terrace deposits

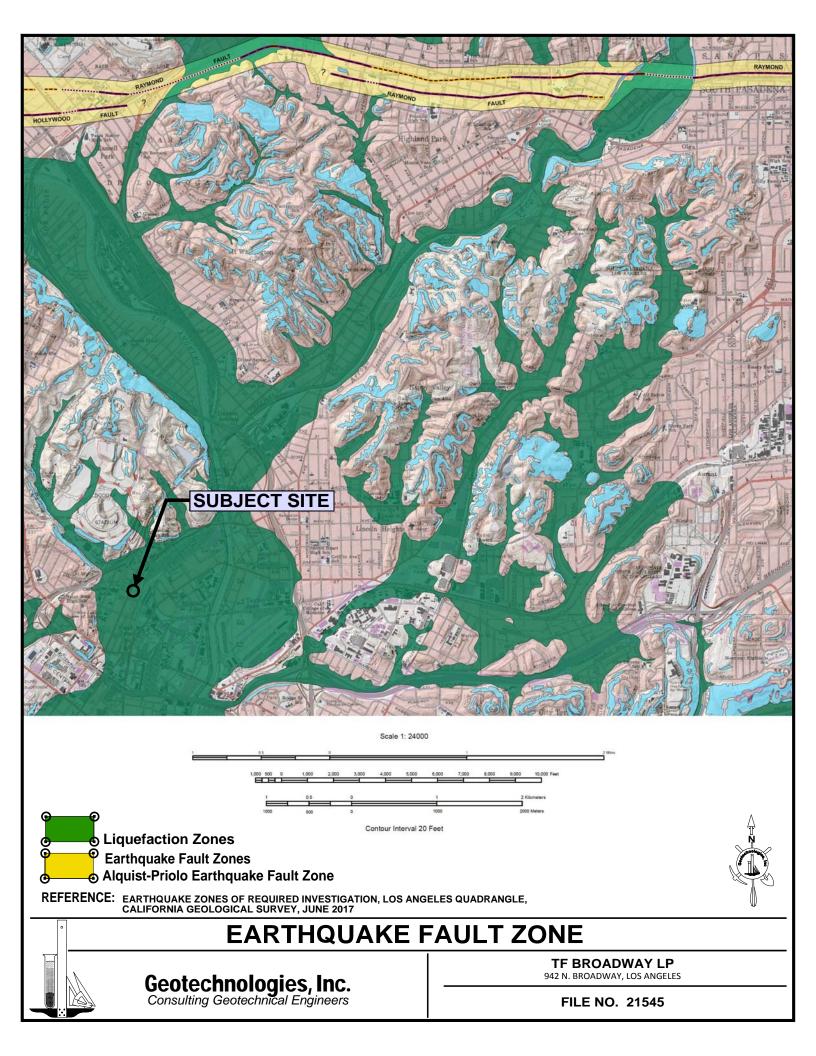
- Qt: Terrace Deposits silt, sand & gravel forming alluvial terrace and dissected alluvial plain deposits
- Tpsl: Puente Formation siltstone, well bedded, light brown & light gray
- Tpsh: Puente Formaiton shale, well bedded, light gray, siliceous

Tpds: Puente Formation - diatomaceous shale, punky, dull white


Tpss: Puente Formation - sandstone, well bedded, medium- to coarse-grained, light borwn to gray


-----? Fault - dashed where indefinite or inferred, dotted where concealed, queried where existence is doubtful

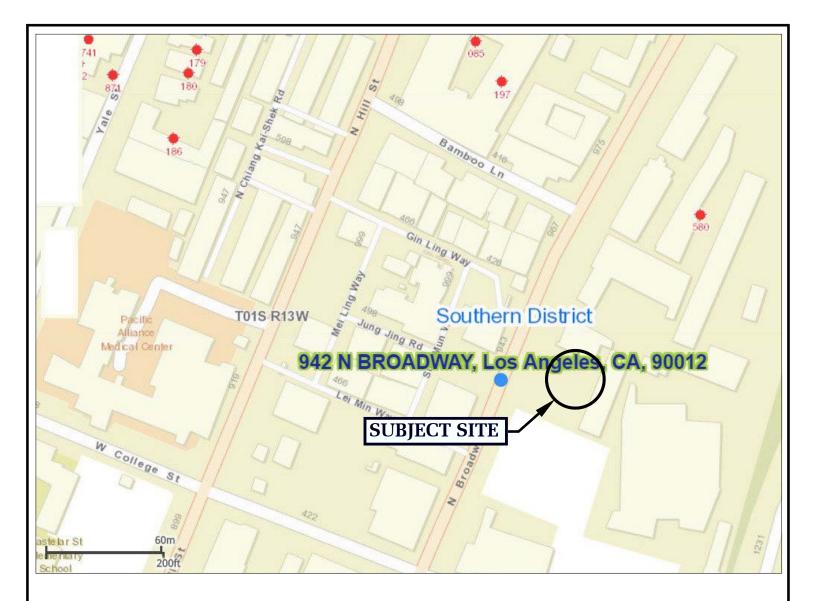

REFERENCE: DIBBLEE, T.W., (1989) GEOLOGIC MAP OF THE LOS ANGELES QUADRANGLES (#DF-22)


LOCAL GEOLOGIC MAP - LAMAR

Geotechnologies, Inc. *Consulting Geotechnical Engineers* TF BROADWAY LP 942 N. BROADWAY, LOS ANGELES

SUBJECT SITE

LOOKOUT DR


REFERENCE: http://navigatela.lacity.org/NavigateLA/

METHANE ZONE RISK MAP

Geotechnologies, Inc.

Consulting Geotechnical Engineers

TF BROADWAY LP 942 N. BROADWAY, LOS ANGELES

OIL WELL LEGEND

- API NO. OPERATOR, WELL NO.
 - 580 Paul F. McKenzie, #T-2
 - 197 E. A. Doran Oil Co.,, #5-1
 - 854 Victor Bavario, #1
 - 085 Nate Bray (G. N.), #10
 - 098 C.C. Harris Oil Co., #9
- API NO. OPERATOR, WELL NO. 097 C.C. Harris Oil Co., #8 186 E.A. Duran Oil Co., #1

REFERENCE: DIVISION OF OIL, GAS & GEOTHERMAL RESOURCES WELL FINDER, STATE OF CALIFORNIA, 2014

OIL WELL LOCATION MAP

TF BROADWAY LP 942 N. BROADWAY, LOS ANGELES

TF Broadway, L.P.

Date: 01/08/18

Elevation: 309'*

File No. 21545 ae/km

Method: 8-inch diameter Hollow Stem Auger *Reference: City of LA NavigateLA Website, 2006 contour lines.

ae/km						*Reference: City of LA NavigateLA Website, 2006 contour lines.
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Asphalt Parking Lot
				0		FILL: Silty Sand to Sandy Clay, dark brown, moist, medium
				-		dense, fine grained, stiff
				1		, , ,
				-		
				2		
2.5	22	21.2	100 7	2		
2.5	32	21.2	108.7	-		
				3		
				-		
				4	CL	ALLUVIUM: Silty Clay, dark brown, moist, stiff
				-		
5	32	16.9	111.3	5		
				-	CL/ML	Clay to Clayey Silt
				6		
				-		
				7		
				,		
				•		
				8		
				-		
				9		
				-		
10	59	5.1	133.9	10		
				-	SM/SP	Silty Sand to Sand, dark yellowish brown, medium dense to
				11		dense, fine to medium grained, minor gravel
				-		, , , , ,
				12		
				13		
				13		
				- 14		
				14		
				-		
15	67	2.4	133.1	15		
				-	SP/SW	Sand to Gravelly Sand, dark brown, dense, fine to coarse
				16		grained
				-		
				17		
				-		
				18		
				10		
				- 19		
				19		
20	100/011	2.4	111.1	-		
20	100/9''	2.4	111.1	20		
				-		
				21		
				-		
				22		
				-		
				23		
				24		
				24		
~-		2.5	10/ 0	-		
25	88	3.6	126.2	25	<u> </u>	
				-	SP	Sand, dark yellowish brown, moist, very dense, fine to medium
		<u> </u>				grained, minor gravel

TF Broadway, L.P.

File No. 21545 ae/km

ae/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Sample Depth ft.	per ft.	content %	Dry Density p.c.f.	feet	Class.	Description
		content /0	p.c.i.	-	C1455.	
				26		
				-		
				27		
				-		
				28		
				-		
				29	CIEM	Cleven Sand to Silter Sand with second your dance fine second
30	50/5''	11.1	117.7	- 30	SC/SM	Clayey Sand to Silty Sand with gravel, very dense, fine grained
	30/3 80/5''	11.1	11/./			Total Depth 30 feet
	00/5			31		No Water
				-		Fill to 3 ¹ / ₂ feet
				32		
				-		
				33		NOTE: The stratification lines represent the approximate
				-		boundary between earth types; the transition may be gradual.
				34		
				-		Used 8-inch diameter Hollow-Stem Auger
				35		140-lb. Automatic Hammer, 30-inch drop Modified California Sampler used unless otherwise noted
				- 36		Woullieu California Sampler useu unless otherwise noteu
				-		
				37		
				-		
				38		
				-		
				39		
				-		
				40		
				- 41		
				42		
				-		
				43		
				-		
				44		
				-		
				45		
				- 46		
				40		
				- 47		
				-		
				48		
				-		
				49		
				-		
				50		
				-		
						l

TF Broadway, L.P.

Date: 01/08/18

Elevation: 308'*

File No. 21545

ae/km

Method: 8-inch diameter Hollow Stem Auger *Reference: City of LA NavigateLA Website, 2006 contour lines.

ae/km			1	1	T	*Reference: City of LA NavigateLA website, 2006 contour lines.
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Asphalt Parking Lot
				0		2 ¹ / ₂ -inch Asphalt over 3 ¹ / ₂ -inch Base
				- 1		FILL: Clayey to Silty Sand, reddish brown, dense, fine grained
				-		THE chayey to Shey Sand, reduish brown, dense, the granied
				2		
				-		
				3		
				-		
				4	<u> </u>	
-	40	15.0	106.0	-		Silty Sand, dark brown, moist, medium dense, fine grained
5	40	17.3	106.0	5		
				- 6	CL/MI	ALLUVIUM: Silty Clay to Clayey Silt, dark brown, moist, stiff
				-		ALLO VIOWI, Shty Clay to Clayey Sht, dark brown, moist, still
				7		
7.5	72	10.6	125.7	-		
				8	SM/SP	Silty Sand to Sand, dark yellowish brown, dense, fine to medium
				-		grained, minor gravel
				9		
10			110.0	-		
10	80/11"	1.8	118.9	10	CIVI	
				- 11	SW	Cobbley Sand, dark brown, very dense, fine to coarse grained
				11		
				12		
				-		
				13		
				-		
				14		
				-		
15	90	1.1	128.7	15		
				- 16		
				- 10		
				17		
				-		
				18		
				-		
				19		
• •	4 6 6 /6 4			-		
20	100/9"	2.7	121.1	20		
				- 21		
				21		
				22		
				-		
				23		
				-		
				24		
	100 000		10-5	-		
25	100/9"	3.6	127.2	25	CD/CLE	
				-	SP/SW	Sand to Cobbley Sand, dark yellowish brown, very dense, fine
					I	to coarse grained

TF Broadway, L.P.

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
					Class.	Description Cobbley Sand to Sandy Silt, dark grayish brown, very dense, fine to coarse grained, stiff Total Depth 30 feet No Water Fill to 5½ feet NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual. Used 8-inch diameter Hollow-Stem Auger 140-lb. Automatic Hammer, 30-inch drop Modified California Sampler used unless otherwise noted
				41 42 43		
				50 -		

TF Broadway, L.P.

Date: 01/08/18 Elev

Elevation: 310'*

File No. 21545 ae/km

Method: 8-inch diameter Hollow Stem Auger

*Reference:	City	of LA	NavigateLA	Website,	2006	contour	lines.

ae/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	*Reference: City of LA NavigateLA website, 2006 contour lines. Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Asphalt Parking Lot
				0		3-inch Asphalt over 5-inch Base
				- 1		FILL: Silty to Sandy Clay, dark brown, moist, stiff, fine
				- I		grained
				2		
2.5	31	20.4	106.7	-		
				3	ML/CL	ALLUVIUM: Clayey Silt to Silty Clay, dark brown, moist, stiff
				4		The view charge she to she chay, dark brown, most, shir
				-		
5	13	16.5	SPT	5		
				- 6		
				-		
		10 1	111.6	7		
7.5	23	18.6	111.2	- 8	SM/MT	Silty Sand to Sandy Silt, medium dense, fine grained, stiff
				-	DIVI/IVIL	Shiy Sanu to Sanuy Shi, meulum uchse, fine grameu, sun
				9		
10	22	1.0	CDT	-		
10	23	1.8	SPT	10	SP	Sand, dark yellowish brown, medium dense, fine to medium
				- 11	51	grained, minor gravel
				-		
10 5		27	110.0	12		
12.5	66	2.7	119.0	- 13	SP/SW	Sand to Cobbley Sand, dense, fine to coarse grained
				-		saile to couster suile, and to couste granica
				14		
15	78	1.6	SPT	- 15		
15	/0	1.0	5F 1	- 15	SW	Gravelly Sand, very dense, fine to coarse grained
				16		
				-		
17.5	100/9''	2.5	123.8	17		
17.5	100/2	2.3	143.0			
				-		
				19		
20	95/7''	2.1	SPT	- 20		
20	1011	<i>4</i> .1	511			
				21		
				-		
22.5	76	8.2	114.1	22		
			11701	23	SP/ML	Sand to Sandy Silt, dark gray, very dense, fine to medium
				-		grained, minor gravel, very stiff
				24		
25	35	12.0	SPT	- 25		
				-	SM/SP	Silty Sand to Sand, dark to yellowish brown, medium dense, fine
						to medium grained, minor gravel

TF Broadway, L.P.

File No. 21545 ae/km

ae/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
				-		
				26		
				-		
27.5	80/11''	4.6	107.6	27		
21.5	00/11	4.0	107.0	28	SP	Sand, dark yellowish brown, very dense, fine to medium
				-	51	grained
				29		
	_			-		
30	57	4.5	SPT	30	CD/CW	
				- 31	5P/5W	Sand to Gravelly Sand, dense, fine to coarse grained
				- 31		
				32		
32.5	85/11''	3.6	110.9	-		
				33	SP	Sand, very dense, fine to medium grained, minor gravel
				-		
				34		
35	57	5.2	SPT	35		
			~	-		Sand, dense, fine to medium grained
				36		
				-		
27.5	90/11''	2.8	1147	37		
37.5	90/11	2.8	114.7			Sand, very dense, fine to medium grained, minor gravel
				-		Sand, very dense, fine to incurum granicu, innor graver
				39		
				-		
40	38	4.2	SPT	40	CT AU	
				- 41	CL/ML	Silty Clay to Clayey Silt, dark brown to gray, moist, medium dense, fine to medium grained, stiff
				- 41		dense, fine to medium gramed, stiff
				42		
42.5	44	27.2	99.2	-		
				43		
				- 44		
				44		
45	22	28.0	SPT	45		
			~~~	-		
				46		
				-		
47.5	77	23.5	105.7	47		
47.5	//	23.3	105./	- 48		
				49		
				-		
50	30	24.6	SPT	50	CIMPAT	
				-	SIVI/IVIL	Sandy Silt to Silty Sand, medium dense, fine grained, stiff
L						•

#### TF Broadway, L.P.

#### File No. 21545 ae/km

ae/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Description
				- 51 - 52		
52.5	86	23.2	99.2	53 54	SM/SP	Silty Sand to Sand, gray to dark gray, very dense, fine grained
55	38	29.5	SPT	55 56	SM	Silty Sand, dark gray, medium dense, fine grained
57.5	85	27.4	99.2	57 - 58 - 59	CL/ML	Silty Clay to Clayey Silt, gray, very dense, fine grained, very stiff
60	35	30.8	SPT	60 61 62		Total Depth 60 feet Water at 55 feet Fill to 3 feet
				63 - 64 - 65		NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual. Used 8-inch diameter Hollow-Stem Auger 140-lb. Automatic Hammer, 30-inch drop
				- 66 - 67 - 68		Modified California Sampler used unless otherwise noted SPT=Standard Penetration Test
				- 69 - 70		
				- 71 72		
				73 - 74 75		
				-		

TF Broadway, L.P.

Date: 02/06/18

Elevation: 309'*

File	No.	2154	5
km			

# Method: 8-inch diameter Hollow Stem Auger *Reference: City of LA NavigateLA Website, 2006 contour lines.

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Asphalt for Parking Lot
				0		3-inch Asphalt over 5-inch Base
				- 1		FILL: Silty Clay, dark brown, moist, stiff, fine grained
				-		FILL. Sitty Clay, dark brown, moist, stirl, fine gramed
				2		
2.5	33	21.1	103.8	-		
				3		
				-	CL	ALLUVIUM: Silty Clay, dark brown, moist, stiff
				4		
5	11	18.0	SPT	5		
-		2000	511	-		
				6		
				-		
	20	15.0	110 -	7		
7.5	29	17.2	110.7	- 8		
				- 0		
				9		
				-		
10	12	17.3	SPT	10		
				-	CL/ML	Silty Clay to Clayey Silt, dark brown, moist, stiff, fine
				11		grained
				12		
12.5	62	3.3	126.4	-		
				13	SP/SW	Sand to Cobbley Sand, dark brown, moist, dense, fine to
				-		coarse grained
				14		
15	36	2.7	SPT	- 15		
15	30	2.1	SPI	15		
				16		
				-		
				17		
17.5	59	3.1	133.6	-		
	50/2''			18		
				- 19		
20	30	6.6	SPT	20		
				-		
				21		
				-		
22.5	100/8''	No Po	covery	22		
22.5	100/8	INO KE		- 23		
				24		
				-		
25	21	13.8	SPT	25	a	
				-	SM/SP	Silty Sand to Sand, dark and yellowish brown, moist, medium
						dense, fine to medium grained, minor cobbles

#### TF Broadway, L.P.

km	Dia	Maister	Dwy D	Donth :-	USCO	Decentration
Sample Dopth ft	Blows per ft	Moisture content %	Dry Density	Depth in	USCS Class.	Description
<u>Depth ft.</u> 27.5	per ft. 50	<u>content %</u>	p.c.f. 114.2	feet 	Ulass.	
30	32	7.8	SPT	29 30 31		
32.5	80	10.3	114.8	32 33		
35	32	4.7	SPT	34 35 36	SP	Sand, dark brown, moist, medium dense, fine to medium grained
37.5	32	23.3	104.3	37 38 39	SM/ML	Sandy Silt to Silty Sand, dark and grayish brown, moist, medium dense, fine grained, stiff
40	23	23.6	SPT			
42.5	35	29.7	95.9	42 43	CL/ML	Silty Clay to Clayey Silt, dark and gray, moist, stiff
45	13	28.1	SPT	44 - 45 - 46		
47.5	45	24.6	102.0	- 47 - 48		
50	16	27.0	SPT	49 - 50 -		Sandy Silt, gray, moist, stiff

#### TF Broadway, L.P.

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet -	Class.	
52.5	53	20.2	106.3	51 52 53 54	SM/ML	Silty Sand to Sandy Silt, gray to dark gray, moist, medium dense, fine grained, stiff
55	14	31.9	SPT	- 55 - 56	CL/ML	Silty Clay to Clayey Silt, gray, moist to wet, stiff
57.5	44	41.5	81.5	57 58 59		
60	32	15.9	SPT	- 60 - 61	SM/SP	Silty Sand to Sand, gray, wet, medium dense, fine grained
62.5	73	18.2	112.5	62 63 64	SP	Sand, gray, wet, very dense, fine to medium grained
65	70	13.4	SPT	65 665 666		
67.5	100/6''	14.5	117.8	67 67 68 - 69		
70	45	15.3	SPT	70		
72.5	53 50/4''	18.4	115.4	71 - 72 73 74		
75	50	10.7	SPT	- 75 -		

#### TF Broadway, L.P.

km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet -	Class.	
77.5	75/10''	8.9	119.8	76 77 78 79		
80	37	11.7	SPT	- 80		
82.5	100/10''	15.2	115.8	81 82 83		Sand, gray, wet, very dense, fine to medium grained
85	67	11.9	SPT	84 - 85 - 86		
87.5	100/5''	8.0	136.9	87 88 89		
90	50/6''	10.4	SPT	90 91 92 93 93 94 95 96 97 98 98 99 - 100		Total Depth 90 feet Water at 47½ feet Fill to 3 feet NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual. Used 8-inch diameter Hollow-Stem Auger 140-lb. Automatic Hammer, 30-inch drop Modified California Sampler used unless otherwise noted SPT=Standard Penetration Test

#### **TF Broadway LP**

#### Date: 06/21/18

Elevation: 308'*

## File No. 21545

#### Method: 8-inch Diameter Hollow Stem Auger

*Reference:	City of	LA N	lavigate l	LA we	ebsite,	2006	

Sample	Blows	Moisture	Dry Density	Depth in	USCS	*Reference: City of LA Navigate LA website, 2006 Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Asphalt
				0		3-inch Asphalt over 4-inch Base
				-		
				1		FILL: Sandy Silt, dark brown, moist, stiff
				2		
2.5	9	16.6	105.2	_		
				3		
				-	ML	ALLUVIUM: Sandy Silt, dark brown, moist, stiff
				4		
5	9	17.5	SPT	- 5		
5	,	17.5	51 1	-		
				6		
				-		
				7		
7.5	50/5''	18.1	115.4	- 8	SM/MI	Silty Sand to Sandy Silt, stiff, very dense, fine grained
				o -	51VI/1VIL	Shty Sand to Sandy Sht, stiff, very dense, fine gramed
				9		
				-		
10	52	1.4	SPT	10		
				-	SW	Cobbley Sand, dense, fine to coarse grained
				11		
				12		
12.5	67	2.5	120.6			
				13		
				-		
				14		
15	54	2.0	SPT	- 15		
			~	-		
				16		
				-		
17.5	100/9''	2.2	126 7	17		
17.5	100/9	3.3	126.7	- 18	SP/SW	Sand to Gravelly Sand, dark yellowish brown, fine to coarse
				- 10	51/544	grained
				19		
			~~	-		
20	50/6''	2.1	SPT	20		
				- 21		
				<i>4</i> 1		
				22		
22.5	100/5"	4.1	105.6	-		
				23		
				- 24		
				2 <b></b>		
25	31	5.2	SPT	25		
				-	SP/SM	Sand to Silty Sand, dark grayish brown, fine to medium
						grained, minor gravel

#### **TF Broadway LP**

#### File No. nk/km

nk/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
30	58	7.8	SPT	26 27 28 29 30 31 32 33 34	SM/SW	Silty Sand to Gravelly Sand, dark gray, fine to coarse grained
35	65	3.5	SPT	- 35 -	SP	Sand, fine to medium grained
37.5	50/4''	7.5	125.3	36 37 38 39	SW	Gravelly Sand, very dense, fine to coarse grained
40	73	3.5	SPT	40 - 41	SP	Sand, dark yellowish brown, fine to medium grained, minor gravel
42.5	100/8''	5.5	126.3	42 43	SM/SW	Silty Sand to Gravelly Sand, fine grained
45	45	9.0	SPT	44 45	SP	Sand, wet, fine to medium grained
47.5	27	22.6	98.3	46 - 47 - 48	SM/ML	Silty Sand to Sandy Silt, gray, moist to wet
50	35	23.0	SPT			Sang Sana to Sundy Shi, gruj, moist to wet
	-			-	SP/MC	Sand to Clayey Silt, dark gray, medium dense, fine grained, stiff

#### **TF Broadway LP**

## File No.

nk/km						
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
52.5	85	35.5	88.6	51 52 53 54		
55	40	23.8	SPT	55 - 56		
57.5	85	30.4	96.1	57 - 58 -		
60	58	24.4	SPT	59 - 60 - 61		
62.5	80	16.6	113.5	- 62 - 63 - 64	SP	Sand, gray, wet, very dense, fine grained
65	43	13.4	SPT	65 66		
67.5	50/5''	12.8	103.9	- 67 - 68 - 69		
70	50/5''	16.0	SPT	- 70 - 71		
72.5	35	12.5	122.7	- 72 73 74		medium dense, fine to medium grained
75	50/3.5''	11.3	SPT	74 - 75 -		very dense

#### **TF Broadway LP**

nk/km						
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
77.5	50/4''	11.3	118.5	76 77 78 79		
80	75	11.3	SPT	- 80		
82.5	50/5''	10.0	129.5	81 82 83		Sand, gray, wet, very dense, fine to medium grained, minor gravel
85	82	10.8	SPT	84 85 86		minor gravel
87.5	50/5''	16.3	118.7	- 87 88 - 89		
90	50/5''	14.0	SPT	90 90 91		
92.5	50/5''	14.6	118.2	92 93 94		
95	50/5"	12.5	SPT	- 95 - 96		
97	85	7.6	129.6	- 97 - 98 - 99		
100	50/5''	5.7	SPT	- 100 -		

#### **TF Broadway LP**

## File No.

k/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
102	100/9''	10.1	124.7	101 102 103		Sand, grey to dark gray, very dense, fine to medium grained
105	50/5''	10.7	SPT	104 - 105 - 106		
107.5	82	11.0	123.8	107 - 108 - 109		
110	75	No Re	covery	- 110 -		
112.5	50/5''	15.1	115.7	111 112 113 114		
115	62	21.1	SPT	115 - 116		BEROCK (PUENTE FORMATION): Siltstone, dark gray to gray, moist, medium hard, laminated
117.5	100/8''	20.4	105.0	- 117 - 118 - 119		NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual. Used 8-inch diameter Hollow-Stem Auger
120	50/5''	19.7	SPT	- 120 - 121		140-lb. Automatic Hammer, 30-inch drop Modified California Sampler used unless otherwise noted <u>SPT=Standard Penetration Test</u>
				122 123 124		
125	100/5"	20.8	102.5	- 125		Total Depth 125 feet Water at 45 feet Fill to 3 feet

#### **TF Broadway LP**

#### Date: 06/25/18

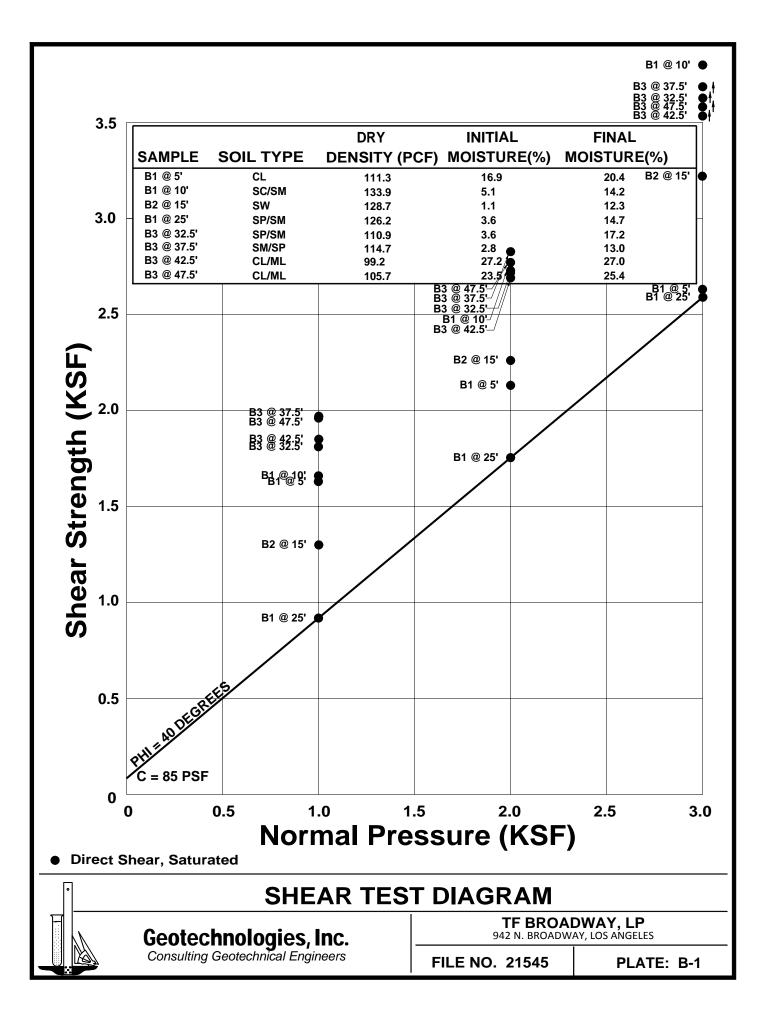
Elevation: 300'*

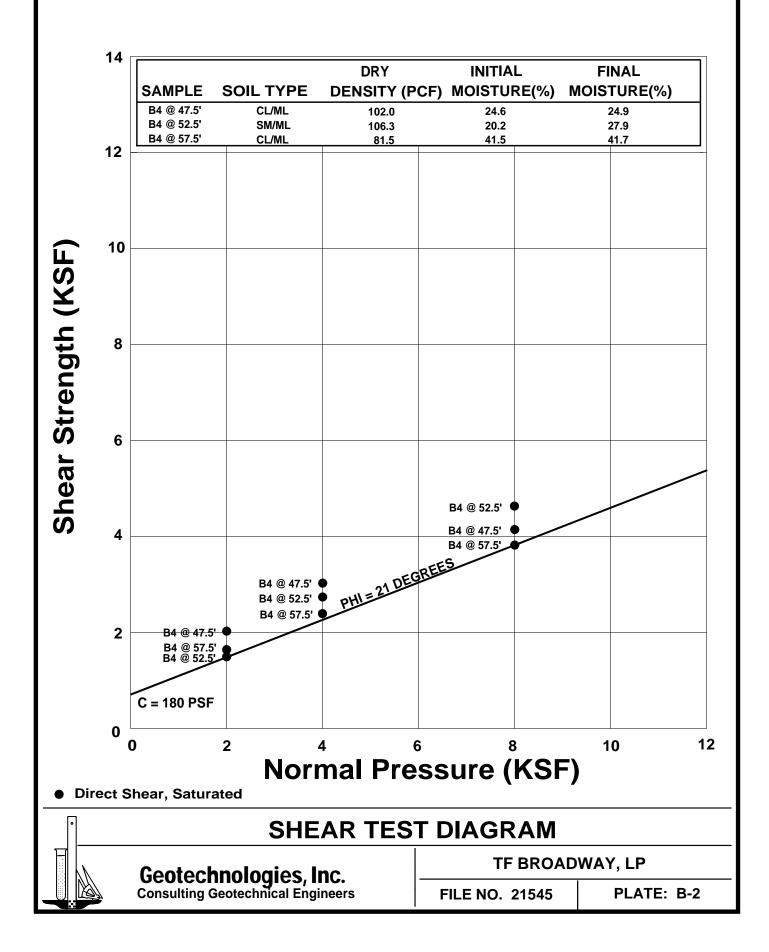
#### File No. 21545 NK/km

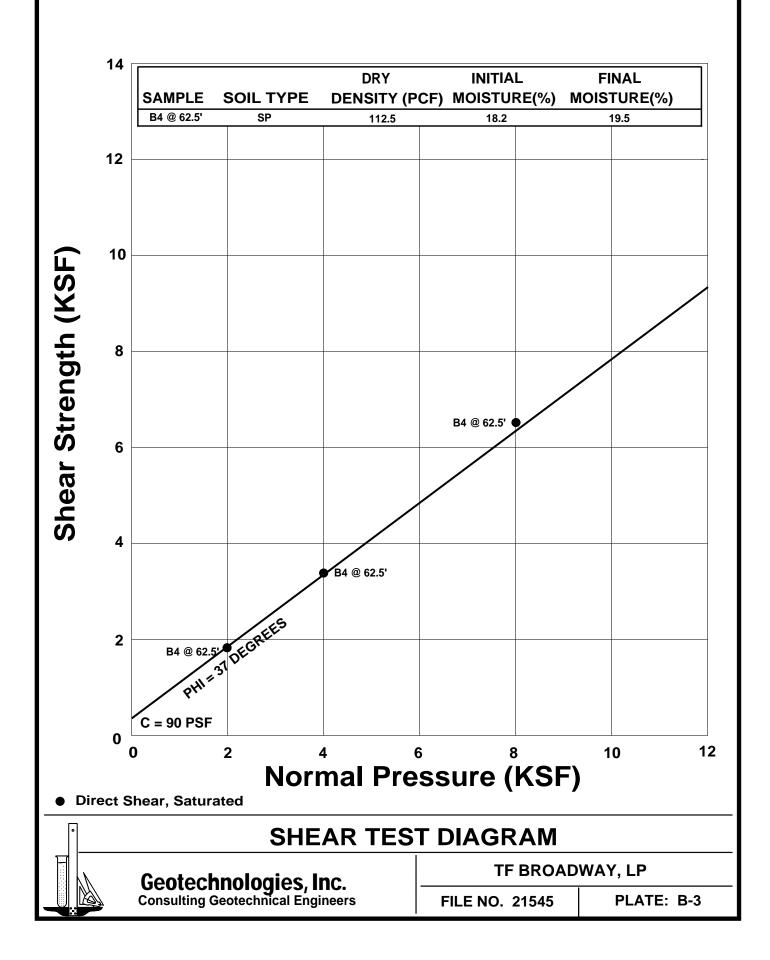
# Method: 7-inch diameter Hollow Stem Auger *Reference: City of LA Navigate LA website, 2006

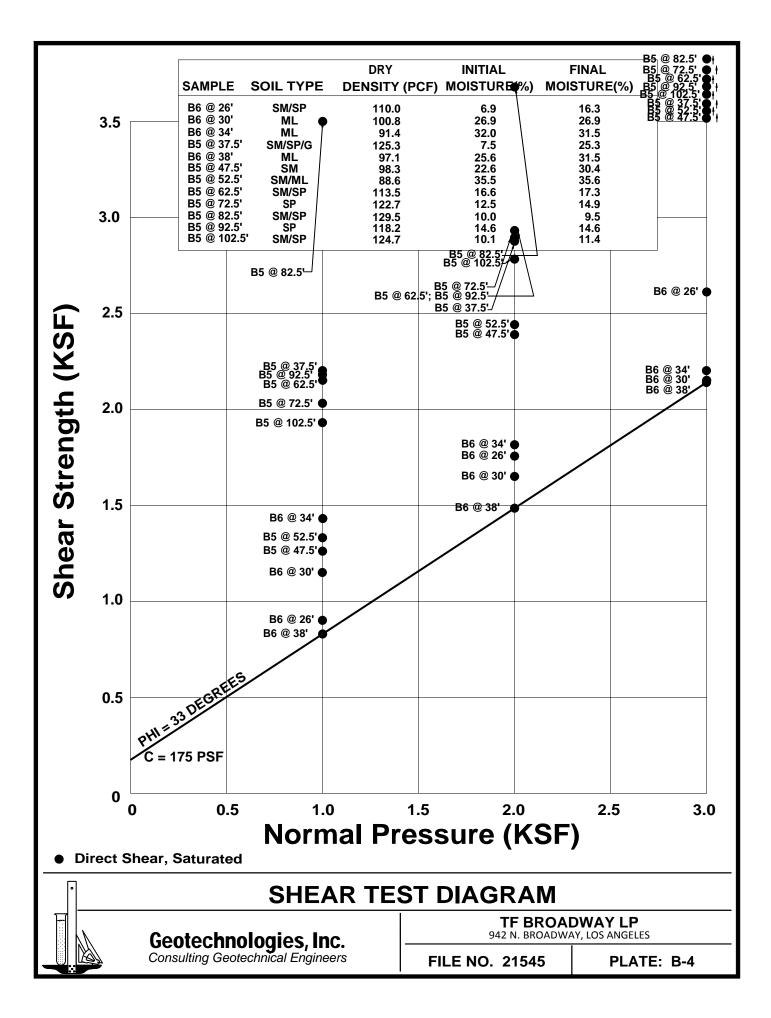
NK/km						*Reference: City of LA Navigate LA website, 2006
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet		Surface Conditions: Barren ground
				0		Fill: Silty Sand to Sandy Silt, dark brown, moist, medium dense,
				-		fine grained, stiff
				1		
				-		
2	15	14.5	105.3	2		
				-		
				3		
				-		
4	9	20.4	81.5	4	<u> </u>	
				-		Silty Sand with brick fragments, fine grained
				5		
				-		
6	5	16.3	104.9	6		
				-		
				7		
				-		
8	50/5''	6.1	117.6	8		
				-	SP/SW	ALLUVIUM: Sand to Gravelly Sand, dark brown, moist,
				9		dense to very dense, fine to coarse grained
				-		
				10		
				-		
				11		
				-		
12	100/5''	7.1	111.3	12	SW	
				- S	SW	Cobbley Sand, dark gray, very dense, fine grained
				-		
				14		
				-		
				15		
16	100/711	10.7	00.2	-		
16	100/7''	10.7	80.2	16		
				-		
				17		
10	100/6''	<b>7</b> 2	D'starlad	- 10		
18	100/6	7.3	Disturbed	18		
				- 10		
				19		
20	74	16	CDT			
20	74	4.6	SPT	20	SDAT	Cond to Condy Silt doub quarish harmen dance fine to
						Sand to Sandy Silt, dark grayish brown, dense, fine to
				21		coarse grained
22.5	= =	22.2	065	22	<u> </u>	
22.5	22.5 55 32.2 96.5	96.5	-		Cond to Condu Cilt. doub energy and item double from to an	
				23		Sand to Sandy Silt, dark gray, medium dense, fine to coarse
1				-		grained
				24		
25	25	25.4	CDT	-		
25	25	25.4	SPT	25		
				-		

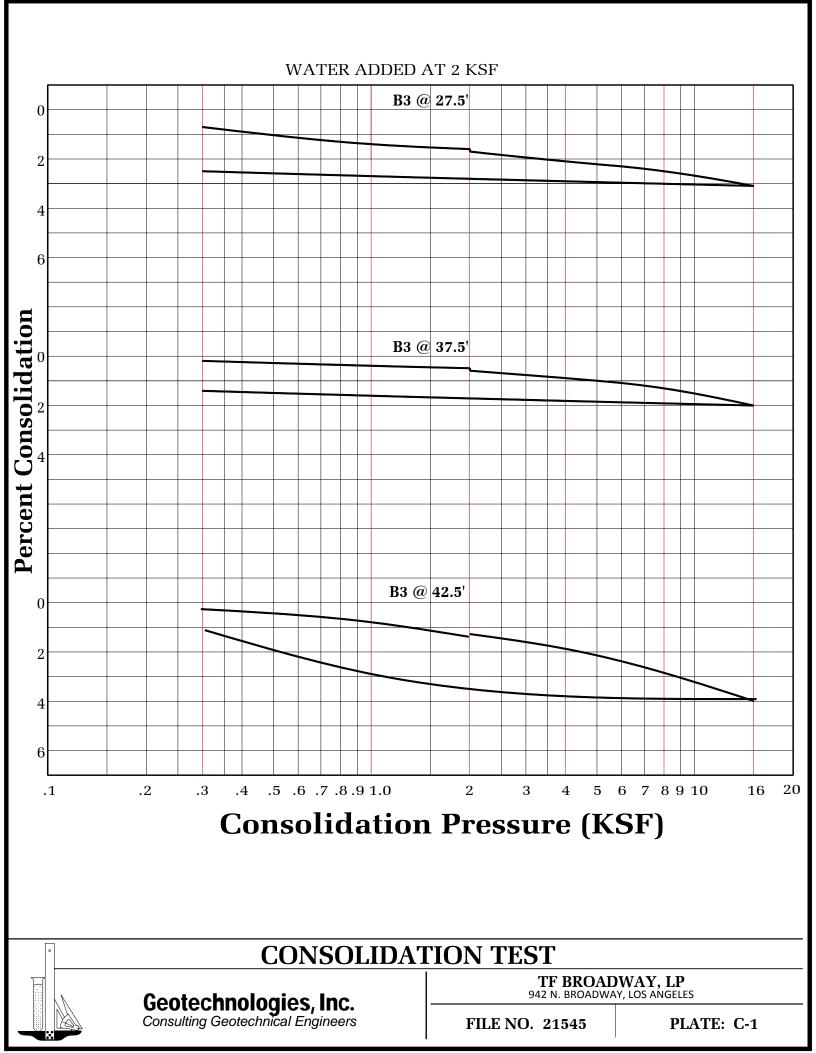
#### **TF Broadway LP**

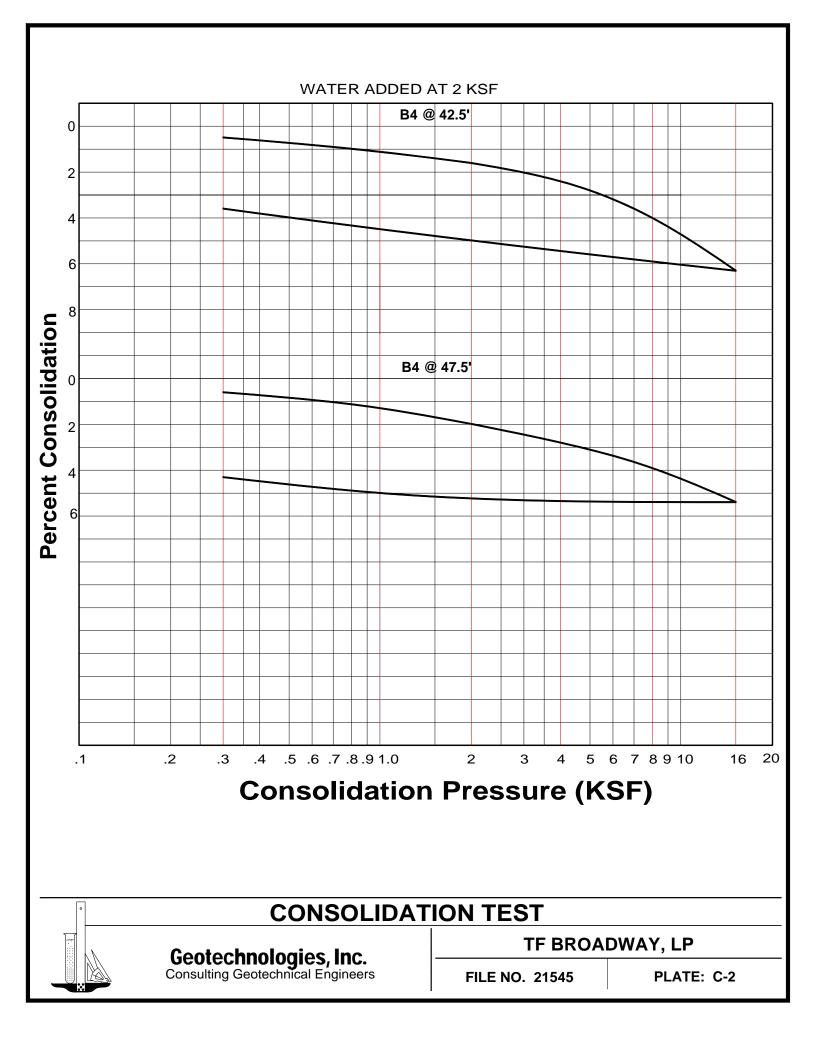

## File No. 21545

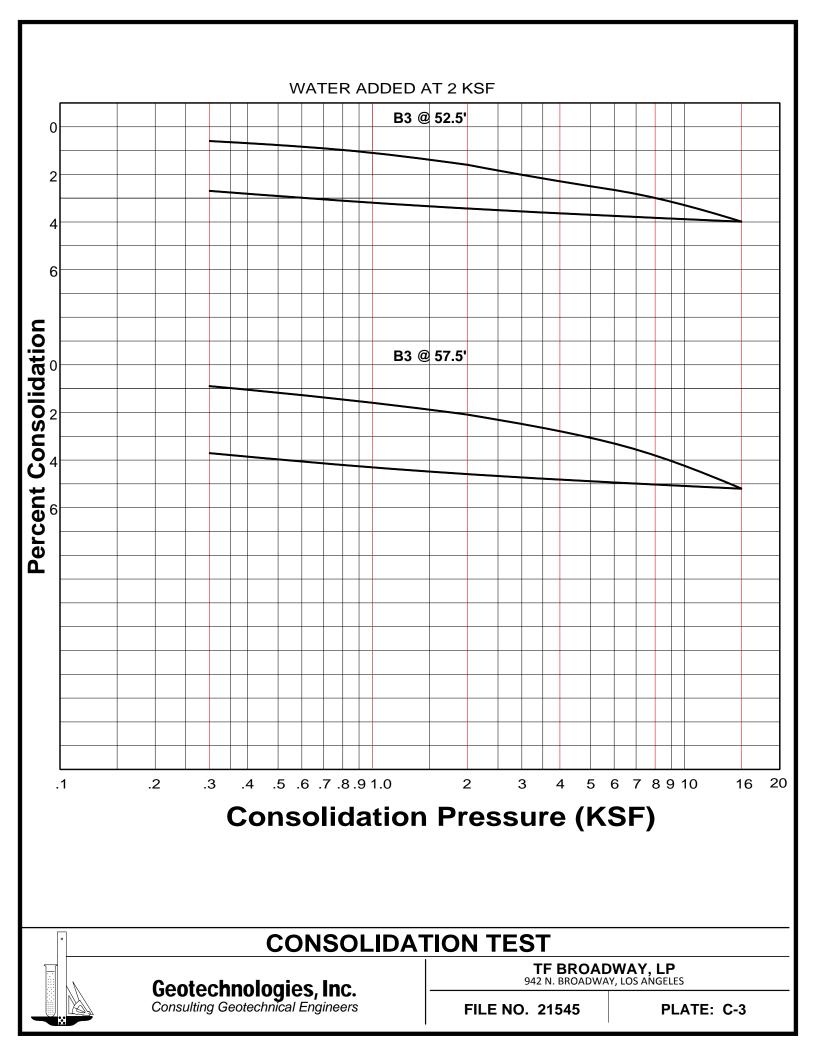

NK/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
				-		
26	83	6.9	110.0	26	CD	
				- 27	SP	Sand, dark gray to yellowish brown, moist, very dense, fine to medium grained
				-		to incurum graineu
28	55	8.3	SPT	28		
				-		
				29		
30	20	26.9	100.8			
00		-00	10010	-	ML/CL	Clayey Silt to Silty Clay, gray to dark gray, stiff
				31		
20	10	20 (	CDT	-		
32	18	29.6	SPT	32	CL	Silty Clay, gray, stiff
				33		Sinty Clay, gray, suit
				-		
34	47	32.0	91.4	34		
				-	MC/CL	Clayey Silt to Silty Clay, gray, stiff
				35		
36	15	23.5	SPT	36		
				-	CL/ML	Silty Clay to Clayey Silt, dark brown, stiff
				37		
38	58	25.6	97.1	- 38		
50	50	25.0	97.1	- 38	ML	Clayey Silt, gray to dark gray, stiff
				39		
				-		
40	28	27.5	SPT	40		
				- 41		
				-		
				42		
42.5	48	21.9	106.3	-	┝ ─ -	
				43		Sandy Silt, gray, medium dense, fine grained
				- 44		
				-		
45	40	24.6	SPT	45		
				-	SM/ML	Silty Sand to Sandy Silt, moist to wet, medium dense, fine
				46 -		grained
				47		
47.5	42	32.3	93.5	-		
				48		
				- 49		
				49		
50	20	32.3	SPT	50		
				-	ML/CL	Clayey Silt to Silty Clay, gray, moist, stiff


#### **TF Broadway LP**


## File No. 21545


NK/km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
				- 51		
				-		
52.5	35	17.2	120.0	52		
				53	SP	Sand, gray to dark gray, wet, dense, fine grained
				- 54		
		11.0	GDT	-		
55	47	11.8	SPT	55 -		
				56		
				- 57		
57.5	150/5"	15.3	119.1	-		
				58		Sand, very dense, fine to medium grained
				59		
60	53	12.4	SPT	- 60		
				- 61		
				-		
62.5	46	No Re	covery	62		
02.5	40			63		
				- 64		
				-		
65	49	13.9	SPT	65		Sand, gray, dense, fine to medium grained
				66		
				- 67		
67.5	100/6''	No Re	covery	-		
				68 -		
				69		
70	63	11.8	SPT	- 70		<b></b>
			~	-		Sand, wet, dense, fine to medium grained
				71		NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual.
	100/64			72		
72.5	100/6''	NR	NR	- 73		Used 7-inch diameter Hollow-Stem Auger 140-lb. Automatic Hammer, 30-inch drop
				-		Modified California Sampler used unless otherwise noted
				74 -		NR= No Recovery SPT=Standard Penetration Test
75	61	NR	SPT	75		Total Depth 75 feet by refusal
				-		Water at 45 feet
						Fill to 8 feet













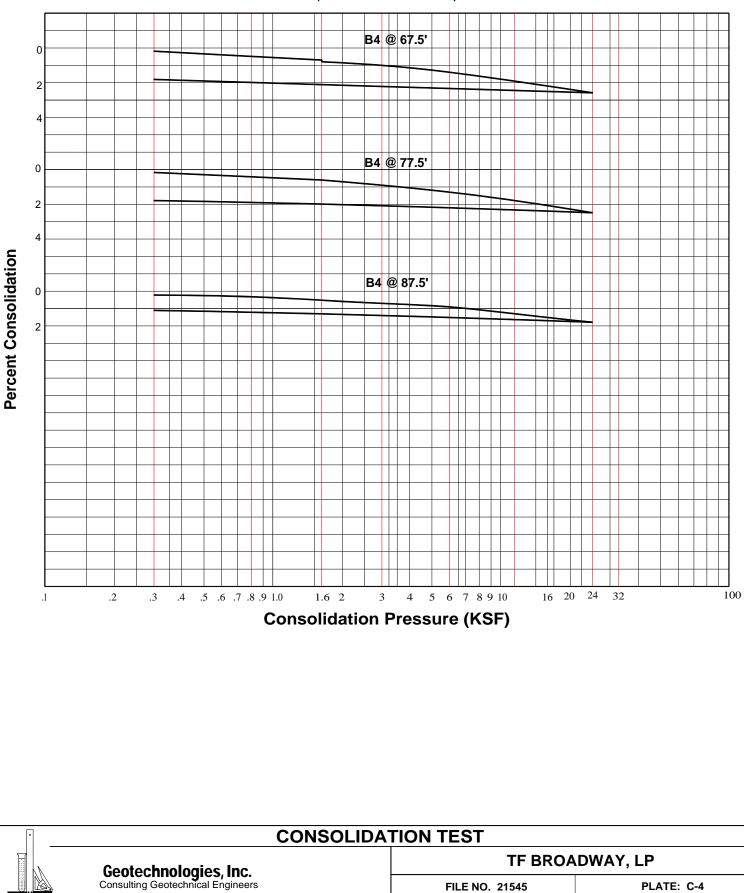
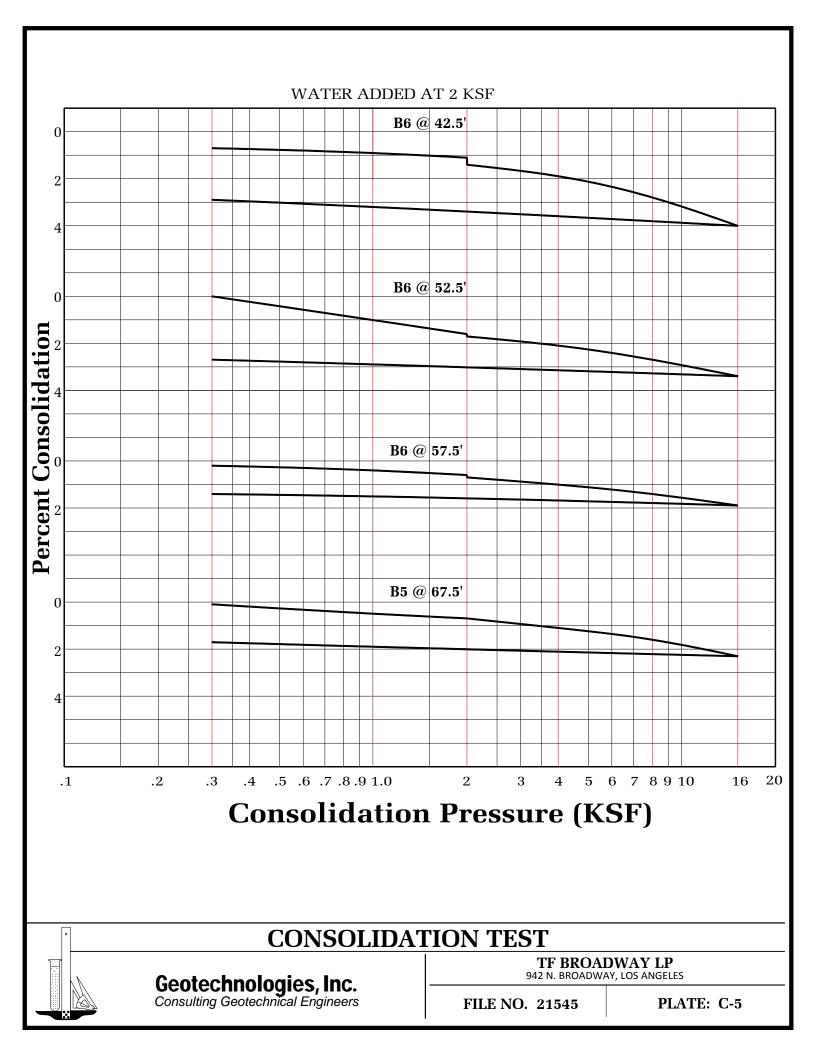
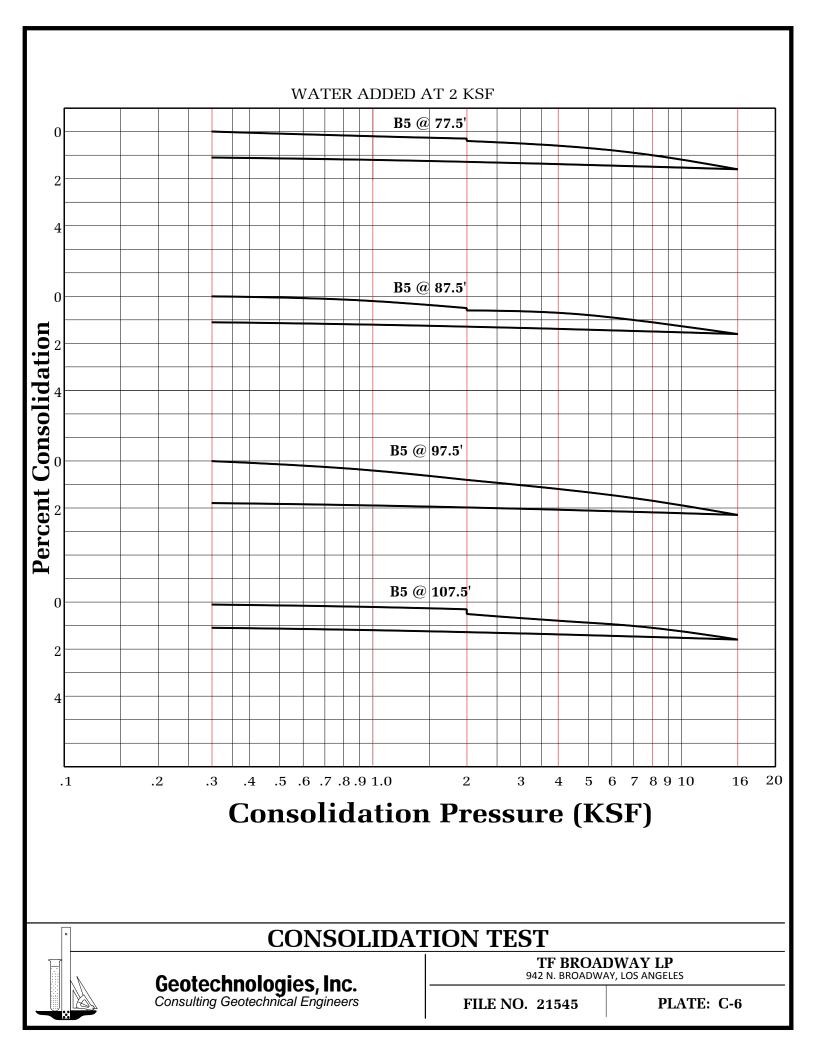






PLATE: C-4

FILE NO. 21545

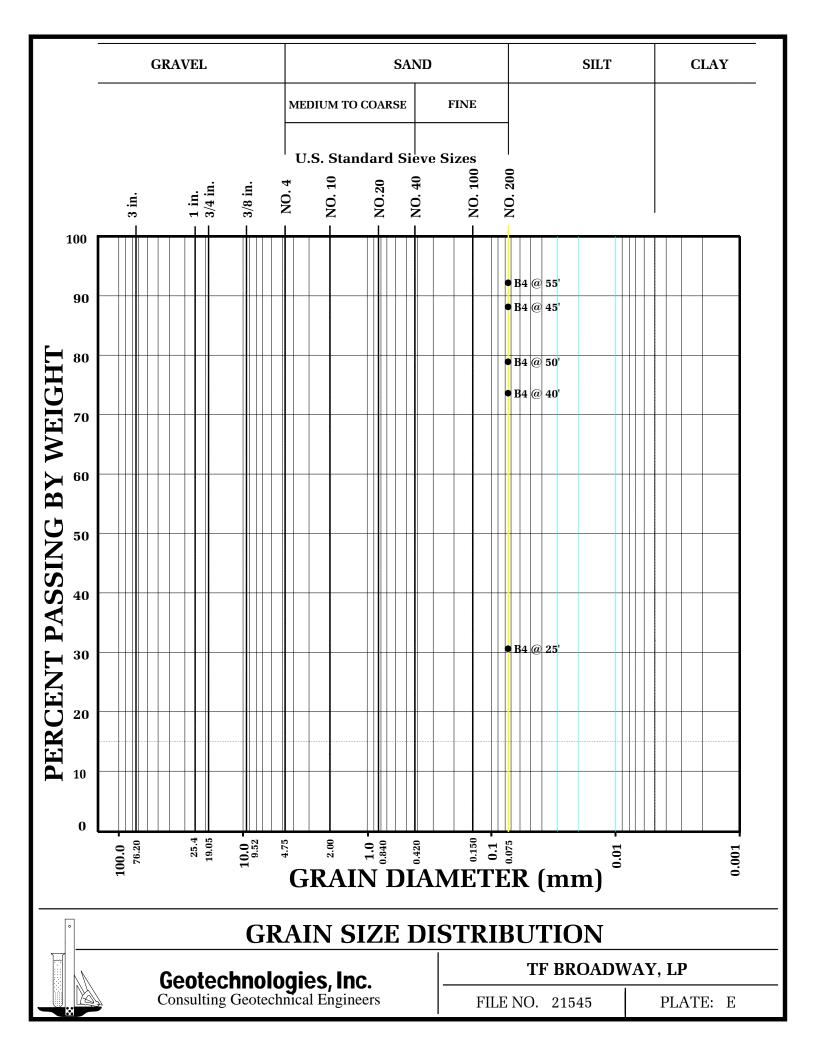
#### (WATER ADDED AT 2 KSF)

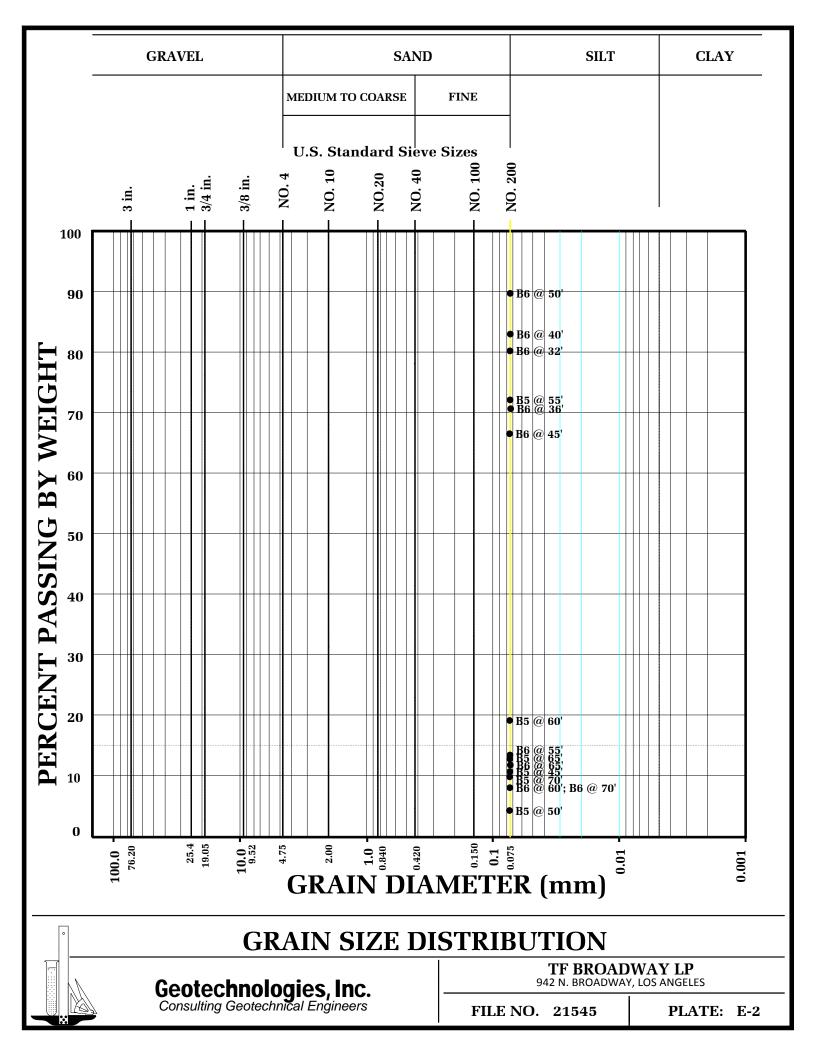


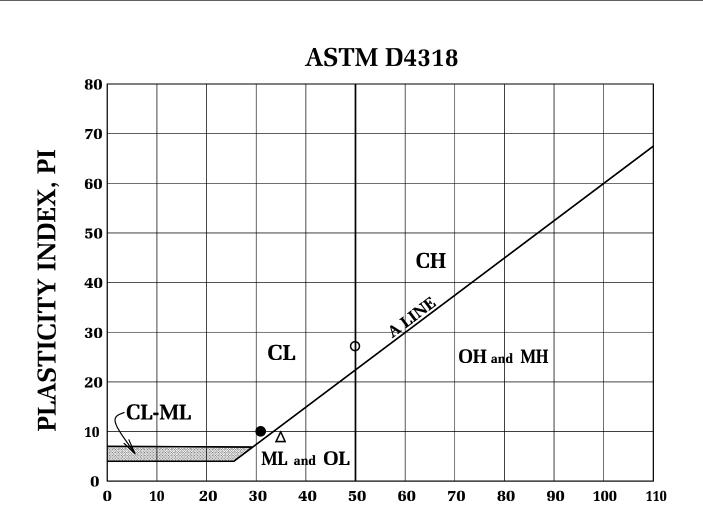


## **SULFATE CONTENT**

SAMPLE	B1 @ 5'	B1 @ 10'	B1 @ 25'
SULFATE CONTENT: (percentage by weight)	< 0.10%	< 0.10%	< 0.10%


# **COMPACTION/EXPANSION/SULFATE DATA SHEET**


# Geotechnologies, Inc. Consulting Geotechnical Engineers


TF BROADWAY, LP 942 N. BROADWAY, LOS ANGELES

FILE NO. 21545

PLATE: D

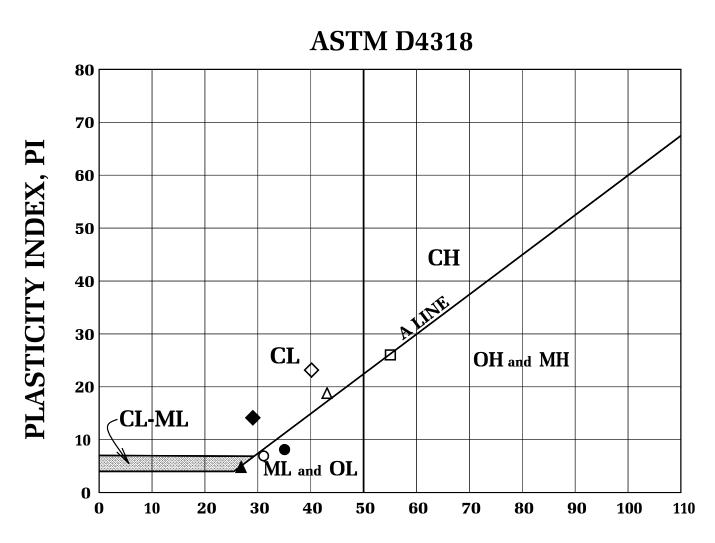






# LIQUID LIMIT, LL

BORING NUMBER	DEPTH (FEET)	TEST SYMBOL	LL	PL	PI	DESCRIPTION
<b>B</b> 4	45	0	50	23	27	СН
<b>B</b> 4	50	•	31	21	10	CL
<b>B</b> 4	55	Δ	35	26	9	ML


# **ATTERBERG LIMITS DETERMINATION**

Geotechnologies, Inc. Consulting Geotechnical Engineers

TF BROADWAY, LP

PLATE: F

FILE NO. 21545

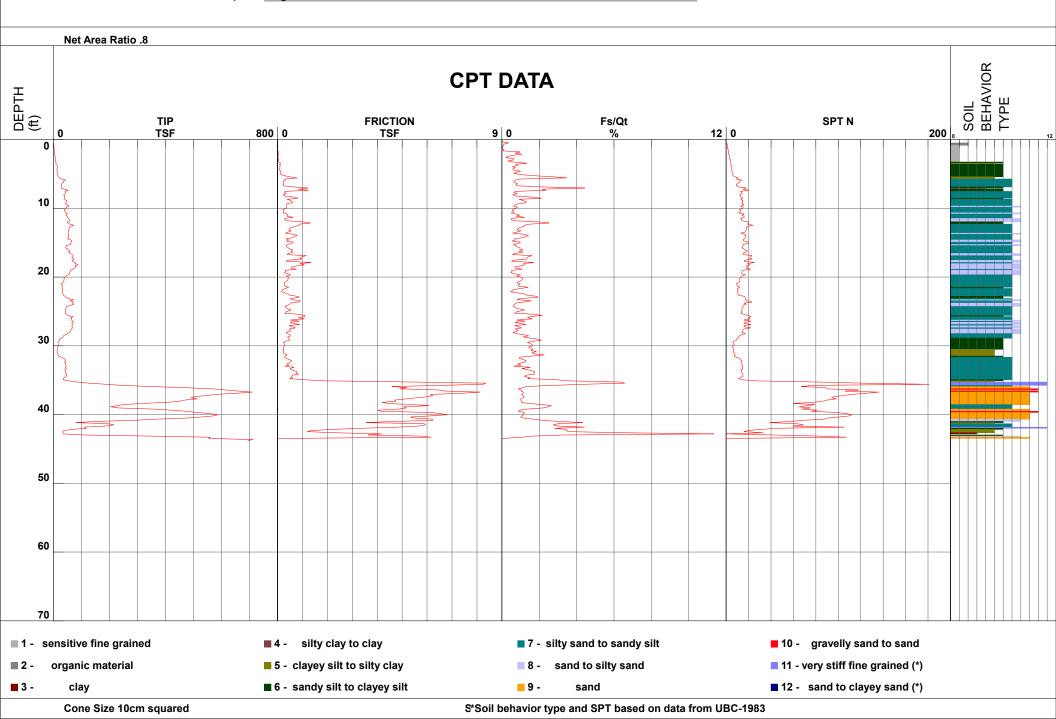


# LIQUID LIMIT, LL

BORING NUMBER	DEPTH (FEET)	TEST SYMBOL	LL	PL	PI	DESCRIPTION
<b>B</b> 5	50	0	31	24	7	ML
<b>B</b> 5	55	•	35	27	8	ML
<b>B6</b>	32	$\diamond$	40	17	23	CL
<b>B6</b>	36	•	29	15	14	CL
<b>B6</b>	40	Δ	43	26	19	CL
<b>B6</b>	45		27	22	5	ML
<b>B6</b>	50		55	29	26	СН

# **ATTERBERG LIMITS DETERMINATION**

## Geotechnologies, Inc. Consulting Geotechnical Engineers


TF BROADWAY LP 942 N. BROADWAY, LOS ANGELES

FILE NO. 21545

PLATE: F-2

# **Geotechnologies Inc**

lie Faut	Project	T.F Broadway	Operator	RC AS	Filename	SDF(924).cpt
LESTING INC.	Job Number	21545	Cone Number	DDG1448	GPS	
	Hole Number	CPT-01	Date and Time	6/21/2018 9:09:40 AM	Maximum Depth	43.80 ft
	EST GW Depth Durin	ng Test	43.80 ft			



Project ID:	Geotehnologies
Data File:	SDF(924).cpt
CPT Date:	6/21/2018 9:09:40 AM
GW During Test	t: 80 ft

	Page: 1
Sounding ID:	CPT-01
Project No:	21545
Cone/Rig:	DDG1448

CPT Date: GW During			018 9: ft	09:40	AM											Projec Cone/R	t No: 21 ig: DDG1	
Depth ft t	qc PS sf	PS -	q1ncs PS -	* PS tsf	Slv Stss tsf	pore prss (psi)	Frct Rato %	* Mat Typ Zon	* Material Behavior Description	Unit Wght pcf	Qc to N	* SPT R-N1 60%	SPT R-N 60%	* * SPT Rel IcN1 Den 60% %	* Ftn Ang deg	 Und OCR Shr - tsf -	* * Fin Ic Ic SBT % Indx	* Nk - -
$\begin{array}{c} 0.33\\ 0.66\\ 0.82\\ 0.98\\ 1.15\\ 1.48\\ 1.64\\ 1.80\\ 1.97\\ 2.30\\ 2.46\\ 2.79\\ 2.95\\ 3.12\\ 3.28\\ 3.61\\ 1.3\\ 3.45\\ 1.3\\ 3.61\\ 1\\ 3.74\\ 1\\ 4.10\\ 1\\ 4.43\\ 1.4\\ 4.59\\ 1\\ 4.10\\ 1\\ 4.43\\ 1.4\\ 4.59\\ 1\\ 4.76\\ 1\\ 4.92\\ 1\\ 1\\ 4.92\\ 1\\ 1\\ 4.92\\ 1\\ 1\\ 5.25\\ 1\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5.74\\ 2\\ 5\\ 1.25\\ 2\\ 3.28\\ 5\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ 1.28\\ 5\\ $	$1.1\\ 1.1\\ 1.1\\ 2.3\\ 7.3\\ 0.3\\ 9.4\\ 4.9\\ 4.8\\ 1.9\\ 2.3\\ 7.3\\ 0.3\\ 9.1\\ 3.5\\ 0.2\\ 3.6\\ 0.3\\ 9.7\\ 0.3\\ 0.3\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5$	$\begin{array}{c} -0.1\\ -0.1\\ 3.74\\ +5.2\\ 6.9\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.99\\ 9.92\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 2.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.23\\ 9.22\\ 9.22\\ 9.23\\ 9.22\\ 9.22\\ 9.22\\ 9.23\\ 9.22\\ 9.22\\ 9.23\\ $	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	$\begin{array}{c} 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.3\\ 1.9\\ 2.3\\ 7.3\\ 3.3\\ 4.0\\ 4.3\\ 4.3\\ 4.3\\ 4.3\\ 4.3\\ 4.3\\ 4.3\\ 4.3$	$\begin{array}{c} 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.4\\ 0.5\\ 0.6\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5$	0.4 0.2 0.6 0.1 0.3 0.5 0.4 0.0 0.2 0.1 0.4 0.0 0.2 0.1 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.5 0.2 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.5 0.2 0.5 0.2 0.5 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 1.0\\ 0.7\\ 0.7\\ 0.6\\ 0.7\\ 0.8\\ 0.9\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2$	٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩	* Haterial Behavior Description Sensitive fine SOIL silty SAND to sandy SILT silty SAND to	120 125 125 125 125 120 120 120 120 120 125 125 125 125 125 125 125 125 125 125	$\begin{smallmatrix} & . & . & . & . \\ & . & . & . & . \\ & . & .$	$\begin{smallmatrix} 60\% \\ \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 1 \\ 4 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7	$ \begin{array}{c} & 0 & 42 \\ 13 & 55 \\ 11 & 49 \\ 11 & 49 \\ 10 & 42 \\ 9 & 10 & 42 \\ 9 & 10 & 42 \\ 9 & 11 & 1 \\ - \\ 13 & 49 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 11 & 48 \\ 12 & 48 \\ 12 & 46 \\ 11 & 47 \\ 13 & 53 \\ 12 & 50 \\ 11 & 48 \\ 12 & 49 \\ 10 & 45 \\ 11 & 47 \\ 12 & 49 \\ 10 & 45 \\ 11 & 47 \\ 12 & 51 \\ 11 & 47 \\ 12 & 51 \\ 11 & 47 \\ 12 & 49 \\ 10 & 45 \\ 11 & 47 \\ 12 & 51 \\ 11 & 47 \\ 12 & 51 \\ 11 & 47 \\ 12 & 51 \\ 11 & 47 \\ 12 & 51 \\ 11 & 47 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12 & 51 \\ 12$	$\begin{array}{c} 40\\ 422\\ 40\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39$	1.9 9.9	18 2.18 12 1.96 13 2.00 13 2.00 17 2.14 16 2.12 18 2.16 26 2.40 36 2.62	$\begin{array}{c}\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$

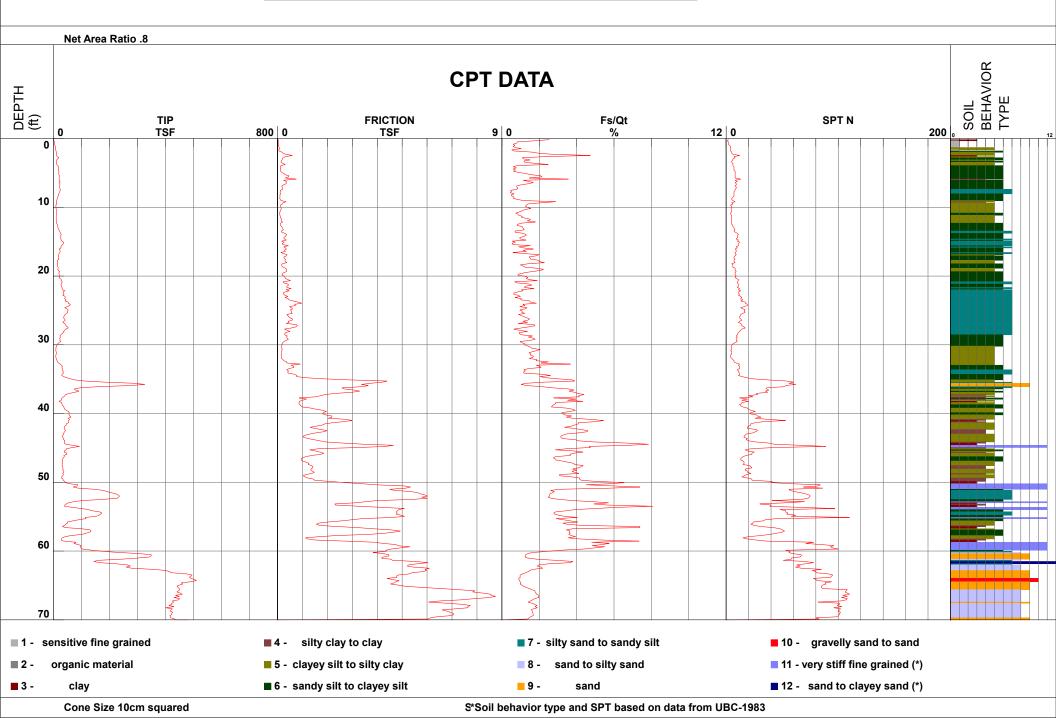
Project ID:	Geotehnologies
Data File:	SDF(924).cpt
CPT Date:	6/21/2018 9:09:40 AM
GW During Test	c: 80 ft

Page: 2	
Sounding ID: CPT-01	
Project No: 21545	
Cone/Rig: DDG1448	

PT Date I Durin			2018 9: ft	09.40	PIN													oject ne/Ri		DDG14	
Depth ft	qc PS tsf	PS -	qlncs PS -	* PS tsf	Slv Stss tsf	pore prss (psi)	Frct Rato %	* Mat Typ Zon	* Material Behavior Description	Unit Wght pcf	Qc to N	R-N1 60%	R-N 60%	SPT IcN1 60%	Rel Den %	Ang deg	tsf	_	IC %	SBT Indx	* Nk - -
15.58	45.7	45.8	70.0	45.7	0.4	-0.1	0.8	5	silty SAND to sandy SILT	120	4.0	11	11	9	41	36		-	17	2.14	16
15.75 15.91	50.8	50.4		50.8	0.5	-0.6	1.0	5	silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0	13	11 13	11	40 44	37	_	_	17	2.20 2.15	16 16
16.08 16.24			85.0 83.4						silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0 4.0		13 15		46 49		_	_		2.17 2.08	16 16
16.40 16.57	54.7 61.0		84.6 78.1						silty SAND to sandy SILT clean SAND to silty SAND	120 125			14 12	11 12	46 50		_	_		2.16 2.01	16 16
16.73	68.2	66.0	80.2	68.2	0.4	0.3	0.6	6	clean SAND to silty SAND	125	5.0	13	14	13	53	38	-	-	11	1.93	16
16.90 17.06	71.4 69.2	66.3	110.9 102.9	69.2	1.0	0.0	1.6 1.4	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0		18 17	14 14	55 53		-	-	17	2.18 2.15	16 16
17.23 17.39	65.9 73.5		98.8 104.0				1.4		silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0	16 17	16 18	13 14	52 55		_	_		2.16 2.12	16 16
17.55 17.72	70.3 66.6		81.2 76.0				0.6		clean SAND to silty SAND clean SAND to silty SAND		5.0 5.0		14 13	13 12	53 52		-	_		1.93 1.93	16 16
7.88	78.5	73.4	117.2	78.5	1.3	-0.9	1.7	5	silty SAND to sandy SILT	120	4.0	18	20	15	57	39	-	-	18	2.17	16
8.05	78.6 88.2	81.7	110.9	88.2	1.1	-0.6	1.2	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0		20 22	16	57 60		-	_	14	2.06 2.04	16 16
8.37	76.9 81.1		96.0 90.5		0.8 0.6				clean SAND to silty SAND clean SAND to silty SAND		5.0 5.0		15 16	14 14	56 57		_	_		2.04 1.93	16 16
8.70	75.1 68.7		86.9 91 6	75.1 68 7	0.6	-0.8	0.8	6	clean SAND to silty SAND silty SAND to sandy SILT		5.0 4.0		15 17	13 13	55 51	38 38	-	_		1.97 2.11	16 16
9.03	60.7	55.0	70.0	60.7	0.3	-0.9	0.5	6	clean SAND to silty SAND	125	5.0	11	12	11	47	37	-	-	12	1.98	16
9.19	60.5 58.1	52.2	70.3 66.8	58.1		-0.2	0.5	6	clean SAND to silty SAND clean SAND to silty SAND		5.0	11 10	12 12	11 10	47 46		_	_	12	1.99 1.98	16 16
9.52 9.69	58.7 52.7		72.2 76.6		0.4		0.7		clean SAND to silty SAND silty SAND to sandy SILT		5.0 4.0		12 13	11 10	46 42		_	_		2.05 2.19	16 16
9.85 0.01	44.5	39.5	65.7 71.1	44.5	0.4	-0.5	0.8	5	silty SAND to sandy SILT		4.0 4.0	10	11 11	8	36 36	35	_	-	19	2.20 2.26	16 16
0.18	38.8	34.2	70.0	38.8	0.4	-1.0	1.1	5	silty SAND to sandy SILT	120	4.0	9	10	8	32	34	-	-	24	2.33	16
0.34	38.4 37.9	33.1	69.5 67.8	37.9	0.4	-1.2	1.1	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	8	10 9	7	31 31	34	_	_	24	2.33 2.33	16 16
0.67 0.83	37.8 32.9								silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0		9 8	7 6	30 26		_	_		2.29 2.33	16 16
1.00	28.7 32.7	24.7		28.7	0.3	-1.2	1.0	5	silty SAND to sandy SILT	120	4.0 4.0	6	7	б	21 25	32	-	-	28	2.43 2.35	16 16
1.33	31.4	26.9	59.9	31.4	0.3	-0.9	0.9	5	silty SAND to sandy SILT	120	4.0	7	8	6	24	32	-	-	26	2.38	16
1.49 1.65			72.0 63.2						silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0	7 7		7 6	24 23	32 32	_	_		2.48 2.42	16 16
1.82 1.98	34.5 31.7		53.4 51.7						silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0			6 6	26 23	33 32	_	_		2.26 2.30	16 16
2.15 2.31	31.9	26.8	48.4 59.3	31.9	0.2	-1.2	0.5	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	7	8	6 6	24 24		-	-	21	2.25 2.37	16 16
2.47	34.3	28.6	69.1	34.2	0.4	-1.5	1.3	5	silty SAND to sandy SILT	120	4.0	7	9	7	26	32	-	-	27	2.43	16
2.64 2.80	35.6 42.4	35.1	73.4 89.2	42.4	0.8	-0.9	1.9	5	silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0		9 11	7 8	27 32	32 34	_	_		2.44 2.45	16 16
2.97 3.13			92.7 73.6						silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0		11 13	9 9	34 40	34 35	_	_		2.45 2.20	16 16
3.30	71.1	58.2		71.1	0.6	-1.1	0.8	6	clean SAND to silty SAND silty SAND to sandy SILT	125	5.0 4.0		14 15	12 11	49 43	37 35	_	-	15	2.06	16 16
3.62	72.3	58.8	91.4	72.3	0.9	-1.3	1.2	5	silty SAND to sandy SILT	120	4.0	15	18	12	49	37	-	-	17	2.15	16
3.79	68.2 73.2		76.6 77.1				0.8		clean SAND to silty SAND clean SAND to silty SAND		5.0 5.0	11 12	14 15	11 12	47 50	36 37	_	_		2.06 2.00	16 16
4.12	62.3 48.4		70.2 60.2					б	clean SAND to silty SAND silty SAND to sandy SILT		5.0 4.0	10 10	12 12	10 8	44 36		_	_		2.07 2.15	16 16
4.44	46.9	37.5	63.0	46.9	0.3	-0.8	0.8	5	silty SAND to sandy SILT	120	4.0	9	12 11	8	35	34	_	_	19	2.21	16 16
4.77	44.2	35.1	65.2 74.0	44.2	0.5	-1.4	1.3	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	9	11	8	32	33	-	-	24	2.35	16
4.94 5.10	44.2 43.0		68.5 61.0						silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0		11 11		32 31		_	_		2.30 2.25	16 16
5.26 5.43	42.1 49.2	33.1	58.5	42.1	0.3	-1.6	0.7	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	8	11 12		31 36		_	_		2.24 2.41	16 16
5.59	51.8	40.5	100.8	51.8	1.1	-1.5	2.2	5	silty SAND to sandy SILT	120	4.0	10	13	10	37	34	-	-	28	2.44	16
5.92	61.9	48.1	87.8	61.9	0.8	0.0	1.4	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	12	18 15	12 10	47 43		-	-	21	2.24 2.26	16
			97.2 74.0				1.7 0.8	5	silty SAND to sandy SILT		4.0 4.0	13 13	17 16	11 10	45 44		_	_		2.29 2.11	
6.41 6.58			89.2 75.4			-0.6 -0.8			silty SAND to sandy SILT clean SAND to silty SAND	120 125	4.0 5.0	13 11	18 14	11 11	47 47	36 36	_	_		2.20 2.04	
б.74	66.3	50.7	78.7	66.3	0.6	-1.3	1.0	5	silty SAND to sandy SILT	120	4.0	13	17	11	45	35	-	-	17	2.15	16
7.07	67.5 67.7	51.4	88.5 71.8	67.7	0.5	-0.9	0.7	6	silty SAND to sandy SILT clean SAND to silty SAND	125	4.0 5.0		17 14	11 10	45 45	35 35	_	_	15	2.22 2.07	16
7.23 7.40			76.0 82.0			-1.5 -0.6			silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0 4.0	13 13	17 17	10 11	44 45	35 35	_	_		2.13 2.17	16 16
7.56 7.72			71.1 72.4	65.3	0.5	-1.3	0.7	5	silty SAND to sandy SILT	120 120	4.0 4.0	12 12	16 15	10 10	44 41		_	_		2.10 2.16	16 16
7.89	61.6	46.1	71.2	61.6	0.5	-0.7	0.8	5	silty SAND to sandy SILT	120	4.0	12	15	10	41	35	-	-	17	2.15	16
8.22	52.1	38.8	64.3	52.1	0.4	-0.7	0.8	5	silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0	11 10	15 13	8	40 36		_	_		2.10 2.20	
			70.5 73.1						silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0	8 7	11 9	7 6	29 23	32 31	_	_		2.38 2.49	
	35.5	26.2	66.0 -	35.5		-1.4	1.2	5	silty SAND to sandy SILT clayy SILT to silty CLAY		4.0 2.0		9 15	6 4	23	31 -	- 1.9	5 2		2.45 2.68	
9.04	23.8	13.6	-	23.8	0.5	-1.2	2.1	4	clayy SILT to silty CLAY	115	2.0	7	12	4	-	-	1.6	4.2	48	2.83	15
9.36	22.8 19.5	11.0	-	19.5	0.3	-1.4	1.7	4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115	2.0 2.0	5	11 10	4 3	_	-	1.5 1.3	3.3	50	2.87 2.87	15
	16.9 17.2	9.5 9.6	_			-1.5 -1.6			clayy SILT to silty CLAY clayy SILT to silty CLAY		2.0 2.0		8 9	3 3	_	_	$1.1 \\ 1.1$			2.90 2.92	
	17.6	9.8 9.1	_	17.5	0.3	-1.7	1.8	3	silty CLAY to CLAY	115	1.5	7	12	3	_	-	1.1		54	2.93	15
0.19	16.7	9.2	-	16.7	0.3	-1.7	1.6	4	clayy SILT to silty CLAY	115	2.0	5	11	3	-	-	1.1	2.7	54	2.93	15
	15.6 15.4	8.5 8.4	-			-1.5 -1.6			silty CLAY to CLAY silty CLAY to CLAY		1.5 1.5		10 10	3 3	_	_		2.5 2.4		2.98 3.00	
	13.6 13.5	7.4 7.2							silty CLAY to CLAY silty CLAY to CLAY		1.5 1.5		9 9		_	_				3.05 3.09	
				1J.I	5.2	1.0	2.1	2	CLAIL CO CLAI		2.5	2	~	2			0.0		55	2.02	

Project ID:	Geotehnologies
Data File:	SDF(924).cpt
CPT Date:	6/21/2018 9:09:40 AM
GW During Test	: 80 ft

Pag	e: 3
Sounding ID: CP	T-01
Project No: 2	1545
Cone/Rig: DDG	1448


Depth ft	qc PS tsf	* qcln PS -	qlncs PS -	* PS tsf	Stss	pore prss (psi)	Rato		* Material Behavior Description		Unit Wght pcf	Qc to N	* SPT R-N1 60%	R-N	* SPT ICN1 60%	Den	Ang deg	 Und OCR Shr - tsf -	Ic SBT % Indx	
31.01 31.17 31.33	13.9 16.0 17.0	7.5 8.5 9.0		13.9 15.9 17.0	0.2 0.3 0.4	-1.6 -1.6 -1.5	1.9 2.0 2.5	3 3 3	silty CLAY to CLA silty CLAY to CLA silty CLAY to CLA silty CLAY to CLA	Y Y	115 115 115	1.5 1.5 1.5	 5 6 6	9 11 11	2 3 3			0.9 2.1 1.0 2.5 1.1 2.7	62 3.05 59 3.00 61 3.04	15 15
31.50 31.66 31.83	19.3 28.5 38.0	10.2 15.0 26.7	61.1	19.2 28.5 38.0	0.3 0.3 0.4	-1.4 -1.5 -1.5	1.8 1.0 1.0	4 4 5	clayy SILT to sil clayy SILT to sil silty SAND to san	ty CLAY dy SILT	115 115 120	2.0 2.0 4.0	5 7 7	10 14 10	3 4 6	- 23	- - 31	1.2 3.0 1.9 4.6 	52 2.91 37 2.63 26 2.39	15 16
31.99 32.15 32.32	43.7 40.0	29.1 30.5 27.9	67.3 72.9 70.8	41.5 43.7 40.0	0.5 0.6 0.5	-1.1	1.2 1.4 1.4	5 5 5	silty SAND to san silty SAND to san silty SAND to san	dy SILT dy SILT	120 120 120	4.0 4.0 4.0	7 8 7	10 11 10	7 7 7	26 28 25	31 32 31		26 2.40 27 2.42 29 2.45	16 16
32.48 32.65 32.81	44.0 44.5	31.3 30.5 30.8	67.3 61.7 66.3	44.9 44.0 44.4	0.5	-1.4 -0.6 -0.7	1.1 0.9 1.1	5 5 5	silty SAND to san silty SAND to san silty SAND to san	dy SILT dy SILT	120 120 120	4.0 4.0 4.0	8 8 8	11 11 11	7 7 7	29 28 28	32 31 32		25 2.36 23 2.32 25 2.36	16 16
32.97 33.14 33.30		31.7 29.7 32.1	56.5 77.9 68.7	46.0 43.1 46.8	0.3 0.7 0.5 0.5	-0.3 -0.7 -0.5	0.7	5 5 5 5	silty SAND to san silty SAND to san silty SAND to san	dy SILT dy SILT	120 120 120	4.0 4.0 4.0	8 7 8 7	11 11 12 10	7 7 7 7	29 27 30 25	32 31 32 31		21 2.24 29 2.47 25 2.36	16 16
33.47 33.63 33.79 33.96	43.2 44.4	28.0 29.5 21.9 21.3	72.3 79.5 - -	40.8 43.2 44.4 43.4	0.5 0.7 0.8 0.7	-1.2 -0.1 -0.4 -0.8	1.4 1.7 1.8 1.8	5 5 4 4	silty SAND to san silty SAND to san clayy SILT to sil clayy SILT to sil	dy SILT ty CLAY	120 120 115 115	4.0 4.0 2.0 2.0	7 11 11	10 11 22 22	7 6 5	25 27 -	31	 3.0 6.9 2.9 6.7	29 2.46 30 2.48 36 2.61 36 2.62	16 15
34.12 34.29 34.45	48.4	32.9 31.5 31.3	85.3 73.5 71.7	48.4 46.6	0.8 0.6 0.6	-1.4	1.8 1.3 1.3	555	silty SAND to san silty SAND to san silty SAND to san	dy SILT dy SILT	120 120 120	4.0 4.0 4.0	8 8	12 12 12 12	8 7 7	30 29 29	32 32 31		29 2.46 27 2.40 26 2.40	16 16
34.61 34.78 34.94	39.8 35.5	19.1 17.0 17.0		39.8 35.4 35.6	0.6 0.5	-1.1 -1.4 -0.6	1.6 1.5 3.1	4 4 3	clayy SILT to sil clayy SILT to sil silty CLAY to CLA	ty CLAY ty CLAY	115 115 115	2.0 2.0 1.5	10 8 11	20 18 24	5 4 5	-	-	2.7 6.0 2.4 5.3 2.4 5.3	37 2.63 38 2.66 48 2.84	15 15
35.11 35.27 35.43	54.2 86.0 127.1	25.7 40.6 59.7	- -	54.2 85.9 127.1	1.9 5.4	-0.7 -0.6 3.7	3.7 6.5 6.7	4 3 3	clayy SILT to sil silty CLAY to CLA silty CLAY to CLA	ty CLAY Y	115 115 115	2.0 1.5 1.5	13 27 40	27 57 85	7 11 16		-	3.7 8.2 5.9 9.9 8.8 9.9	43 2.74 44 2.76 38 2.66	15
35.76 35.93	244.9 347.8	162.4 230.1	252.1 230.8 245.4	246.0 348.7		5.4 53.8 48.4	4.4 2.7 1.3	9 5 6	very stiff fine S silty SAND to san clean SAND to sil	dy SILT ty SAND	120 120 125	2.0 4.0 5.0	63 41 46	94 61 70	28 33 41	74 83 95	40 41 43		23 2.32 15 2.08 7 1.74	16 16
36.26 36.42	566.0 616.2	372.7 404.8	307.5 372.7 404.8	566.2 616.4	4.9 6.5	10.0 9.6 5.8	1.1 0.9 1.1	666	clean SAND to sil clean SAND to sil clean SAND to sil	ty SAND ty SAND	125 125 125	5.0 5.0 5.0	61 75 81	93 100 100	52 61 67	95 95 95	44 45 46		5 1.61 5 1.47 5 1.51	16 16
36.75 36.91	709.0 655.0	463.5 427.2	433.2 463.5 427.2 376.3	709.1 655.1	8.1 7.4	11.8 5.9 5.0 1.4	1.0 1.1 1.1 1.1	6 6 6	clean SAND to sil clean SAND to sil clean SAND to sil clean SAND to sil	ty SAND ty SAND	125 125 125 125	5.0 5.0 5.0 5.0	87 93 85 75	100 100 100 100	71 77 71 63	95 95 95 95	46 46 46 45		5 1.49 5 1.51 5 1.53 5 1.54	16 16
37.24 37.40	548.4 503.6	356.0 326.2	356.0 326.2 317.6	548.4 503.7	6.2 6.0 5.6	3.8 3.2 1.6	1.1 1.2 1.1	6 6 6	clean SAND to sil clean SAND to sil clean SAND to sil	ty SAND ty SAND	125 125 125	5.0 5.0 5.0	71 65 64	100 100 98	60 56 54	95 95 95	45 45 44		5 1.57 5 1.62 5 1.60	16 16
37.90	469.6	302.2	331.3 302.2 288.7	469.7	5.2 4.7 4.7	1.4 1.7 0.4	1.0 1.0 1.1	6 6 6	clean SAND to sil clean SAND to sil clean SAND to sil	ty SAND ty SAND	125 125 125	5.0 5.0 5.0	66 60 58	100 94 90	55 51 49	95 95 95	45 44 44		5 1.55 5 1.57 5 1.60	16
38.39 38.55	313.8 248.0	200.5 158.1	261.0 222.7 209.1	313.8 248.0	4.2 4.4 5.4	0.9 0.4 0.2	1.0 1.4 2.2	6 5	clean SAND to sil clean SAND to sil silty SAND to san	ty SAND dy SILT	125 125 120	5.0 5.0 4.0	52 40 40	81 63 62	45 37 31	95 90 82	43 42 41		5 1.63 8 1.80 13 2.02	16 16
38.88 39.04	205.1 233.7	130.2 148.1	213.7 192.7 200.7	205.2 233.8	6.1 5.1 5.2	9.5 3.3 6.5	2.7 2.5 2.2	555	silty SAND to san silty SAND to san silty SAND to san	dy SILT dy SILT	120 120 120	4.0 4.0 4.0	36 33 37	57 51 58 71	30 27 30	79 76 80	40 40 40		16 2.11 16 2.11 14 2.04	16 16
39.37 39.54	422.6 476.4	266.7 299.9	243.2 266.7 299.9 320.1	$\substack{422.7\\476.4}$		13.0 5.4 2.9 2.3	1.4 1.0 0.9 1.2	6 6 6	clean SAND to sil clean SAND to sil clean SAND to sil clean SAND to sil	ty SAND ty SAND	125 125 125 125	5.0 5.0 5.0 5.0	45 53 60 64	85 95 100	41 45 50 55	94 95 95 95	43 43 44 44		7 1.76 5 1.59 5 1.53 5 1.62	16 16
39.86 40.03	561.2 586.4	351.8 366.8	351.8 366.8 357.1	561.3 586.5	6.6 6.8 6.1	4.9 5.0 6.9	1.2 1.2 1.1	6 6 6	clean SAND to sil clean SAND to sil clean SAND to sil	ty SAND ty SAND	125 125 125	5.0 5.0 5.0	70 73 71	100 100 100	60 62 60	95 95 95	45 45 45		5 1.59 5 1.57 5 1.55	16 16
40.52 40.68	470.0 361.3	292.2 224.1	329.4 292.2 255.1	470.2 361.4	5.3 5.5 6.2	4.7 6.8 6.6	1.0 1.2 1.7	6 6 6	clean SAND to sil clean SAND to sil clean SAND to sil	ty SAND	125 125 125	5.0 5.0 5.0	66 58 45	100 94 72	55 50 41	95 95 94	44 44 43		5 1.55 5 1.64 9 1.84	16 16
41.01 41.18	148.9 81.8	92.0 33.0		148.9 81.9	6.2 4.6 3.5	4.5 0.8 5.3	2.2 3.2 4.5	5 5 3	silty SAND to san silty SAND to san silty CLAY to CLA	dy SILT Y	120 120 115	4.0 4.0 1.5	44 23 22	71 37 55	34 20 9	86 64 -	41 38 -	 5.6 9.9	13 1.99 22 2.29 41 2.71	16 15
41.50 41.67	215.9 186.7	132.6 114.4	196.5	216.2 186.7	5.7	1.5	3.1	5	silty SAND to san silty SAND to san silty SAND to san clayy SILT to sil	dy SILT dy SILT	120 120 120 115	4.0	30 33 29 22	49 54 47 55	26 28 25 11	73 76 71 -	39 40 39 -	  7.6 9.9	19 2.20 17 2.14 20 2.22 37 2.63	16 16
42.00 42.16	117.1 65.3 38.7	71.5 25.7	148.6	117.3 65.4 38.8	3.3 2.3	11.5 3.0	2.9 3.6	5 4	silty SAND to san clayy SILT to sil silty CLAY to CLA	dy SILT ty CLAY	120 115 115	4.0 2.0	18 13 10	29 33 26	16 7 5		36 - -	4.4 8.2	24 2.34 42 2.73	16 15
42.49 42.65 42.82	33.9 34.8 36.7	13.3 13.5 14.2	- -	34.1 35.0 36.9	1.2 2.3 4.2	8.4 8.3 9.7	3.8 7.1 9.9	3 3 3	silty CLAY to CLA silty CLAY to CLA silty CLAY to CLA	Y Y Y	115 115 115	1.5 1.5 1.5	9 9 9	23 23 24	4 5 5	-	-	2.2 4.0 2.3 4.1 2.4 4.4	58 2.99 69 3.15 75 3.23	15 15
43.15	350.0	211.0	240.2	350.3	5.8	16.4	1.7	6	clayy SILT to sil clean SAND to sil clean SAND to sil	ty SAND	115 125 125	5.0	34 42 67	56 70 100	16 39 57		- 42 44	7.7 9.9  	27 2.40 9 1.84 5 1.58	16

* Indicates the parameter was calculated using the normalized point stress. The parameters listed above were determined using empirical correlations. A Professional Engineer must determine their suitability for analysis and design.

Middle Earth Geo Testing

# **Geotechnologies Inc**

die Eann	Project	T.F Broadway	Operator	RC AS	Filename	SDF(925).cpt
TESTING INC.	Job Number	21545	Cone Number	DDG1448	GPS	
	Hole Number	CPT-02	Date and Time	6/21/2018 10:16:42 AM	Maximum Depth	70.37 ft
	EST GW Depth Durin	g Test	70.37 ft			



Project ID:	Geotehnologies
Data File:	SDF(925).cpt
CPT Date:	6/21/2018 10:16:42 AM
GW During Test	:: 80 ft

	Page: 1
Sounding ID:	CPT-02
Project No	21545
Cone/Rig:	DDG1448

CPT Date GW Durin			2018 10 ft	:16:42	2 AM											t No: 21545 ig: DDG1448
Depth ft	qc PS tsf	PS -	qlncs PS -	PS tsf	Stss tsf	pore prss (psi)	Rato %	Typ Zon	Behavior		to N	* SPT R-N1 60%	R-N 60%	* * * SPT Rel Ft IcN1 Den An 60% % de	g Shr - g tsf -	
0.33	2.5 3.4	4.1 5.4	-		0.0		1.8	3	silty CLAY to CLAY clayy SILT to silty CLAY	115	1.5	3	2 2	1 2	0.2 9.9	74 3.22 15
0.66	4.2 4.9	6.7 7.9	-	4.2 5.0	0.0	2.7		4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115 115	2.0	2	2	2	0.3 9.9 0.3 9.9	51 2.88 15
0.98 1.15	5.7 7.3	9.2 11.7	_	5.8 7.4	0.0		0.7 0.6		clayy SILT to silty CLAY clayy SILT to silty CLAY	115 115		5 6	2 3 4 2	3 3	0.4 9.9 0.5 9.9	42 2.73 15 36 2.61 15
1.31 1.48		13.9 13.5	44.0	8.7 8.5	0.1 0.1	3.2	0.7 1.0	4	silty SAND to sandy SILT clayy SILT to silty CLAY	115	4.0 2.0					34 2.57 16 38 2.65 15
1.64 1.80			40.0 43.5	8.9 9.7	0.0 0.1		0.5 0.7		silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0 4.0	4 4	2 2 5 5 6	3 5 4 4 5 4		31 2.51 16 31 2.51 16
1.97 2.13	10.9 11.0	17.4 17.6	_	10.9 11.0		3.5 3.3	1.6 2.0		clayy SILT to silty CLAY clayy SILT to silty CLAY	115 115	2.0 2.0	9 9	5 5	5 5		38 2.65 15 40 2.70 15
2.30 2.46	12.5 12.4	20.0 19.8	-	12.5 12.4		3.6 3.5			clayy SILT to silty CLAY silty CLAY to CLAY		1.5	13	8	6	0.9 9.9	42 2.73 15 51 2.89 15
2.62 2.79	13.8 19.7			13.8 19.7		3.5 3.6	2.3 1.1		clayy SILT to silty CLAY silty SAND to sandy SILT	115 120		11 8		7 29 4	2	38 2.65 15 24 2.34 16
2.95 3.12	16.0 12.2	25.7 19.5	64.7	16.0 12.2	0.2	0.4	1.2 1.5	4	silty SAND to sandy SILT clayy SILT to silty CLAY	120 115	2.0		4 6 3	6224 5	0.8 9.9	
3.28 3.45	11.2	17.9	58.8 58.1	12.4 11.2			1.2 1.3		silty SAND to sandy SILT clayy SILT to silty CLAY	115	4.0 2.0	9	3 6	5	0.8 9.9	
3.61 3.77	12.3	19.4 19.7		12.1 12.3	0.3	0.7	1.8 2.5	4	clayy SILT to silty CLAY	115	2.0 2.0	10	6 6	5 5	0.9 9.9	37 2.64 15 42 2.72 15
3.94 4.10	16.5 18.4	29.6	55.9 52.8	18.5	0.1	0.9		5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	7	4 5	6 23 3 6 27 3	9	21 2.25 16
4.27 4.43	18.1 17.5	28.1	56.7 51.8	17.5	0.1	1.9		5	silty SAND to sandy SILT silty SAND to sandy SILT	120		7		6 26 3 6 25 3	B – –	23 2.30 16 21 2.27 16
4.59 4.76	17.4 19.7		54.9 54.7	17.4 19.7		1.7 1.7		5	silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0		4 5	7 29 3		23 2.31 16 20 2.23 16
4.92 5.09	20.0 19.8	31.8	61.6 70.6	19.9	0.2		1.3	5	silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0 4.0	8 8	5 5	7 29 3 7 29 3		22 2.29 16 25 2.38 16
5.25 5.41	19.7 21.7		77.2 92.2	19.8 21.8		2.6 2.8	1.6 2.1		silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0 4.0	8 9	5 5	7 29 3 8 32 3		28 2.43 16 30 2.48 16
5.58 5.74	21.1 21.2	34.1	92.4 77.9	21.1 21.3	0.3		2.2 1.5		clayy SILT to silty CLAY silty SAND to sandy SILT		2.0 4.0			8 8 31 3	B	26 2.39 16
5.91 6.07			69.4	21.0 21.1			3.6 1.2	5	silty SAND to sandy SILT		2.0 4.0	17 8	10 5	9 8 31 3	B – –	37 2.64 15 24 2.33 16
6.23 6.40	24.9 20.3		81.8 81.1	24.9 20.3			1.5 1.7	5	silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0	10 8	6 5	9 37 3 8 30 3		24 2.33 16 28 2.45 16
6.56 6.73	24.3 23.4	38.0 36.2	68.9	24.4 23.5	0.3 0.2		1.5 1.1	5	silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0 4.0	10 9	6 6	9 35 3 8 33 3	B – –	24 2.35 16 22 2.29 16
6.89 7.05	21.9 22.8		60.8 61.4	22.0 22.9			0.8 0.8	5	silty SAND to sandy SILT silty SAND to sandy SILT	120 120	4.0 4.0		5 6	7 31 3 7 32 3		21 2.26 16 21 2.25 16
7.22 7.38	23.1 25.3	37.2	63.1 63.8	25.4	0.2	3.4	0.9 0.8	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	9 9	6	8 32 3 8 34 3	7 – –	21 2.26 16 20 2.22 16
7.55 7.71	23.4	33.7	53.6 53.3	24.5 23.5	0.1	3.3	0.5 0.5	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	9 8	6	7 33 3 7 31 3	7 – –	17 2.13 16 18 2.16 16
7.87 8.04		27.0	50.1 52.7		0.1	2.1	0.5 0.7	5	silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0	7		7 29 3 6 24 3	5	18 2.17 16 23 2.30 16
8.20 8.37		24.3	47.8 48.4	17.6	0.1	1.9	0.5 0.6	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0 4.0	6	4	6 23 3 5 20 3	4	21 2.26 16 23 2.31 16
8.53 8.69	14.0	18.9	48.8 46.7	14.0	0.1	1.9	0.6	5	silty SAND to sandy SILT silty SAND to sandy SILT		4.0 4.0	5	4 3	5 16 3 4 12 3	3	27 2.40 16 28 2.44 16
8.86 9.02	12.0	18.4		12.1	0.1	1.5	0.9 1.2	4		115	4.0 2.0	9	3 6	4 10 3 5	0.8 7.1	
9.19 9.35	10.7		_	11.8 10.7	0.2	1.4		4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115 115	2.0	9	5	5		43 2.75 15
9.51 9.68	9.1	19.5 14.7	-	13.3 9.2	0.1	1.7	1.5	4	clayy SILT to silty CLAY clayy SILT to silty CLAY		2.0	7	7 5	4	0.6 5.0	35 2.60 15 41 2.70 15
9.84 10.01	10.1	15.3 16.1		9.6 10.1	0.1	1.5	1.3	4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115	2.0	8	5	4	0.7 5.3	39 2.68 15 39 2.67 15
10.17	9.7 10.9	15.5	_	9.7 10.9	0.1	1.5	1.7	4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115 115	2.0	9	5	4		36 2.62 15
10.50 10.66	10.3	14.0	-	10.9 10.3	0.1	1.6	1.1	4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115	2.0	7 7	5	4 4	0.7 5.1	
10.83 10.99	11.1	14.8	47.4	10.9	0.1	1.6	0.9	4	silty SAND to sandy SILT clayy SILT to silty CLAY	115	4.0	4	3	4 5 3 4	0.7 5.3	
11.16 11.32	10.1	15.2	-	10.4	0.1	1.5	1.2	4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115 115	2.0	7	5	4 4	0.7 4.9	38 2.65 15
11.48 11.65	10.7	15.7	-	10.3	0.2		1.5	4	clayy SILT to silty CLAY clayy SILT to silty CLAY		2.0	8	5	4 4	0.7 4.7	40 2.70 15
11.81 11.98	10.7	15.2	-	10.2	0.1	1.7	1.7	4	clayy SILT to silty CLAY	115	2.0	7	5	4 4	0.7 4.5	40 2.70 15
12.14	11.8	16.3	-	11.4	0.1	1.7		4	clayy SILT to silty CLAY clayy SILT to silty CLAY	115	2.0	8	6	4	0.8 5.0	36 2.62 15
12.47 12.63	14.6	16.5	50.1		0.1		0.9	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	4	3	4 6 3 4 7 3	1	34 2.58 16 33 2.55 16
12.96	16.9	18.9	56.4 58.3	17.0	0.2	1.8	1.1	5	clayy SILT to silty CLAY silty SAND to sandy SILT	120	2.0	8 5	8	4 5 12 3		33 2.56 16
13.29	19.9	21.9	62.7	19.9	0.2	2.1	1.2	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	5	5	5 14 3 5 17 3	2	33 2.55 16 32 2.52 16
13.45 13.62	24.0	26.1	53.1 53.8	22.9 24.0	0.2	2.3	0.7	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	6 7 7	6	6 21 3 6 23 3	3	25 2.35 16 24 2.33 16 27 2 41 16
	28.6		71.6	25.7 28.7	0.4	2.4	1.2	5	silty SAND to sandy SILT silty SAND to sandy SILT		4.0	8	6 7 7	6 25 3 7 28 3 7 25 2	4	27 2.41 16 27 2.40 16 28 2 44 16
	27.2	28.8	69.9 66.3		0.3	1.9	1.3	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	7 7 7	7 7 7	7 25 3 7 26 3	4	28 2.44 16 26 2.40 16
14.60	27.8	29.1		26.1 27.8	0.3	0.8	1.0	5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	7 7 7	7 7 7	6 24 3 7 26 3 7 26 3	4	26 2.38 16 25 2.36 16
14.76 14.93	30.3	31.4	69.9 53.4	27.5	0.2	1.2		5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	8	8	7 26 3 7 29 3 8 35 3	4	28 2.43 16 19 2.21 16 19 2.19 16
	35.7	36.6	62.5 56.5		0.2	1.2		5	silty SAND to sandy SILT silty SAND to sandy SILT	120	4.0	10 9	9	8 34 3	5	19 2.19 16 17 2.15 16
15.42	34.3	35.0	57.2	34.4	0.2	1.1	U.6	5	silty SAND to sandy SILT	⊥∠U	4.0	9	9	7 32 3	5 – –	19 2.19 16

* Indicates the parameter was calculated using the normalized point stress. The parameters listed above were determined using empirical correlations. A Professional Engineer must determine their suitability for analysis and design.

Middle Earth Geo Testing

Project ID:	Geotehnologies
Data File:	SDF(925).cpt
CPT Date:	6/21/2018 10:16:42 AM
GW During Test	t: 80 ft

				Page: 2	
				Sounding ID: CPT-02	
				Project No: 21545	
				Cone/Rig: DDG1448	
*	*	*	*	* * *	

CPT Date GW Durir			2018 10 ft	:16:4	2 AM													No: 21	
Depth ft	qc PS tsf		qlncs PS -	tsf	Stss tsf	pore prss (psi)	Rato %	Typ Zon	Behavior Description		N	60%	R-N	IcN1	Rel : Den :	Ang deg	 Und OCR Shr - tsf -	Ic SBT % Indx	* - -
Depth ft 15.58 15.75 15.91 16.08 16.24 16.40 16.57 16.73 16.73 17.09 17.05 17.72 17.82 17.82 17.82 17.82 17.85 18.21 18.37 18.54 18.37 19.03 19.03 19.03 19.36 19.52 19.69 19.85 20.01 18.37 20.48 20.42 20.48 20.44 20.51 20.67 20.83 21.00 21.16 22.31 22.47 22.80 22.31 22.47 23.13 23.30 22.37 23.13 23.30 22.37 23.13 23.30 22.47 23.13 23.30 22.57 23.13 23.30 22.57 24.12 24.24 24.44 25.16 25.26 25.76 25.76 25.76 25.76 25.76 25.77 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.70 27.	$ \begin{array}{c} {}_{PS} {}_{r} {}_{r} {}_{28.25} {}_{27.3} {}_{21.04} {}_{42.43} {}_{227.53} {}_{21.04} {}_{42.43} {}_{227.53} {}_{21.04} {}_{42.43} {}_{227.53} {}_{21.04} {}_{42.43} {}_{227.53} {}_{21.04} {}_{42.43} {}_{227.53} {}_{21.44} {}_{24.06} {}_{117.48} {}_{117.48} {}_{22.24} {}_{20.44} {}_{119.16} {}_{115.22} {}_{22.24} {}_{20.21} {}_{14.9} {}_{93} {}_{117.22} {}_{29.22} {}_{22.22} {}_{22.24} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22} {}_{22.22$	$\begin{array}{c} {}_{PS} \\ {}_{PS} \\ {}_{22,77} \\ {}_{27,4} \\ {}_{21,4} \\ {}_{22,60} \\ {}_{23,60} \\ {}_{19,2} \\ {}_{11,2} \\ {}_{23,60} \\ {}_{11,2} \\ {}_{23,60} \\ {}_{11,2} \\ {}_{11,2} \\ {}_{11,2} \\ {}_{11,2} \\ {}_{11,2} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,1} \\ {}_{11,2} \\ {}_{12,2} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} \\ {}_{22,60} $	$\begin{array}{c} {\rm PS} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} qt\\ FS\\ -28.3\\ 27.3\\ 21.4\\ 24.3\\ 224.4\\ 19.2\\ 24.4\\ 19.2\\ 24.4\\ 19.2\\ 20.4\\ 19.6\\ 17.5\\ 20.2\\ 24.4\\ 19.6\\ 19.6\\ 15.3\\ 20.4\\ 21.5\\ 20.2\\ 21.5\\ 22.2\\ 21.5\\ 24.0\\ 20.3\\ 21.5\\ 24.0\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 22.5\\ 2$	$\begin{array}{c} {\rm Stss}_{\rm sts}_{\rm sts$	porse (ps:) 	Rato 0  1.69 0.92 1.82 1.44 0.63 2.11 1.92 1.44 0.63 2.11 1.92 1.44 1.55 1.66 2.11 1.22 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.4 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52	u yn - MTZ - MTZ -	Material Behavior Description silty SAND to sandy SILT silty SAND to sandy SILT clayy SILT to silty CLAY clayy SILT to silty CLAY silty SAND to sandy SILT silty SAND to sandy SILT clayy SILT to silty CLAY clays SILT to silty CLAY clays SILT to silty CLAY clays SILT to silty CLAY silty SAND to sandy SILT silty SAND to sa	Wght pet 120 120 120 120 120 120 120 120 120 115 115 115 115 115 115 115 115 120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} \text{to} \\ \text{N} \\ \hline \\ 4.0 \\ 4.0 \\ 2.0 \\ 4.0 \\ 2.0 \\ 4.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 $	SPT R-N1 R-N1 7 7 7 7 7 7 7 7 7 7 7 7 7	R-N 60% 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SPT1 IcN1 60% 76655555555555555555555555555555555555	Rel : Pener	Ftn Ang deg	Shr - tsf - -         -	Fin         Ic           IC         SET           %         Indx           30         2.42           32         2.42           33         2.56           40         2.50           24         2.34           31         2.50           24         2.34           31         2.50           24         2.34           30         2.67           39         2.67           39         2.63           39         2.63           39         2.63           39         2.63           39         2.63           39         2.63           39         2.63           39         2.63           30         2.63           31         2.55           31         2.55           31         2.55           31         2.55           31         2.55           32         2.55           32         2.53           32         2.55           32         2.53           32         2.55           32	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $
30.51 30.68 30.84	9.5 9.5 9.4	5.3 5.2 5.2	- - -	9.5	0.2 0.2 0.2	0.3	2.5	3	silty CLAY to CLAY silty CLAY to CLAY silty CLAY to CLAY	115 115 115	1.5	4 3 3	6 6 6	2 2 2	-	- -	0.5 1.4	74 3.22 79 3.27 78 3.26	15

Project ID:	Geotehnologies
Data File:	SDF(925).cpt
CPT Date:	6/21/2018 10:16:42 AM
GW During Test	: 80 ft

Page: 3	5
Sounding ID: CPT-02	2
Project No: 21545	5
Cone/Rig: DDG1448	3

	PT Date: 6/21/2018 10:16:42 AM Project No: 21545 W During Test: 80 ft Cone/Rig: DDG1448																		
Depth ft	qc PS tsf	PS	qlncs PS -	* qt PS tsf	Slv Stss tsf	pore prss (psi)	Frct Rato %	* Mat Typ Zon	Material Behavior Description	Unit Wght pcf	Qc to N	* SPT R-N1 60%	SPT R-N 60%	* * SPT Rel IcN1 Den 60% %	* Ftn Ang deg	Und OCR Shr -	* Fin Ic %	* Ic SBT Indx	* Nk - -
$\begin{array}{c} 33.63\\ 33.79\\ 33.96\\ 34.12\\ 34.45\\ 34.78\\ 34.45\\ 34.78\\ 34.94\\ 35.27\\ 35.43\\ 35.60\\ 35.76\\ 35.93\\ 35.60\\ 35.76\\ 35.93\\ 35.60\\ 35.76\\ 35.93\\ 35.60\\ 35.76\\ 35.93\\ 35.60\\ 35.76\\ 35.93\\ 35.60\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35.76\\ 35$	$\begin{array}{c} 31.4\\ 35.1\\ 35.1\\ 35.1\\ 36.5\\ 37.0\\ 37.0\\ 46.1\\ 429.9\\ 37.0\\ 46.1\\ 429.9\\ 37.0\\ 40.1\\ 29.9\\ 37.0\\ 40.1\\ 29.9\\ 325.7\\ 277.0\\ 74.9\\ 95.1\\ 277.0\\ 74.9\\ 95.1\\ 277.0\\ 75.0\\ 95.1\\ 277.0\\ 77.7\\ 75.0\\ 95.1\\ 277.0\\ 77.7\\ 75.0\\ 95.1\\ 277.0\\ 77.7\\ 75.0\\ 29.9\\ 29.3\\ 29.9\\ 29.3\\ 29.9\\ 29.3\\ 29.3\\ 29.3\\ 29.3\\ 29.3\\ 29.3\\ 29.3\\ 29.3\\ 29.3\\ 29.3\\ 37.6\\ 40.9\\ 29.3\\ 55.6\\ 63.3\\ 38.7\\ 75.6\\ 63.3\\ 37.6\\ 40.9\\ 29.9\\ 55.6\\ 63.3\\ 33.4\\ 43.1\\ 43.3\\ 37.9\\ 33.4\\ 43.3\\ 37.9\\ 33.4\\ 43.3\\ 37.9\\ 33.4\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48.1\\ 48$	$\begin{array}{c} 15,9\\ 17,7\\ 17,6\\ 25,00\\ 18,20\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10\\ 28,10$		$\begin{array}{c} 31 \\ 315 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ $	0.4 0.44 0.44 0.44 0.44 0.64 0.64 0.64 0.61 0.88 0.11 1.88 4.42 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.34 4.22 3.23 3.23 3.23 3.24 2.23 3.24 2.23 2.33 1.97 1.55 0.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2	$\begin{array}{c} 0.88\\ 0.75\\ 0.10\\ 0.75\\ 0.00\\ 0.11\\ 0.00\\ 0.61\\ 0.10\\ 0.00\\ 0.61\\ 0.12\\ 0.95\\ 0.12\\ 0.95\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\$	$\begin{array}{c} 1.3\\ 3.1\\ 2.2\\ 2.2\\ 4.3\\ 3.0\\ 9\\ 4.0\\ 3.7\\ 7\\ 4.2\\ 3.7\\ 7\\ 4.2\\ 3.7\\ 7\\ 4.2\\ 3.7\\ 7\\ 4.2\\ 3.7\\ 7\\ 4.2\\ 3.7\\ 7\\ 1.2\\ 2.8\\ 3.7\\ 7\\ 1.2\\ 2.8\\ 3.7\\ 7\\ 1.2\\ 2.8\\ 3.7\\ 7\\ 1.2\\ 2.8\\ 3.7\\ 7\\ 1.2\\ 2.8\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 3.7\\ 7\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$	4 4 4 5 4 3 4 4 4 4 4 5 6 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3	clay SILT to silty CLAY clay SILT to silty CLAY clay SILT to silty CLAY silty SAND to sandy SILT clay SILT to silty CLAY clay SILT to silty CLAY silty CLAY to CLAY silty	115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         1	2.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.00004.005.005	8 9 9 9 6 8 8 10 9 9 11 15 5 8 8 31 3 9 9 9 9 9 9 9 9 9 8 8 6 9 9 9 9 9 10 18 11 31 13 11 31 13 11 31 13 11 31 13 11 31 13 11 31 13 11 31 13 11 31 13 11 31 13 11 31 13 11 31 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 112 13 11 11 13 11 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 13 11 12 12 13 11 11 12 12 12 12 12 12 12 12 12 12 12	$\begin{array}{c} 168\\ 188\\ 9\\ 9\\ 120\\ 23\\ 300\\ 7\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3333454333777686865577985555555555554555544444444554551122255555555	2.652 2.600 2.480 2.800 2.872 2.722 2.67 2.624 2.802 2.822 2.67 2.64 2.422 2.63 2.64 2.422 2.63 2.64 2.42 2.63 2.64 2.42 2.63 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.9	$\begin{array}{c} 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\$

Project ID:	Geotehnologies
Data File:	SDF(925).cpt
CPT Date:	6/21/2018 10:16:42 AM
GW During Test	t: 80 ft

Page: 4	
Sounding ID: CPT-02	
Project No: 21545	
Cone/Rig: DDG1448	

Project ID:	Geotehnologies
Data File:	SDF(925).cpt
CPT Date:	6/21/2018 10:16:42 AM
GW During Test	: 80 ft

	Page: 5
Sounding ID:	CPT-02
Project No	21545
Cone/Rig:	DDG1448

		*		*				*		*				*		*	*	*			*	*	*
•	qc		q1ncs	qt	Slv	pore	Frot	Mat		Material		Unit	Oc	SPT	SDT				Und	OCP		Ic	Nk
Depth	PS	PS	PS	PS		prss				Behavior		Wqht	to	R-N1		IcN1			Shr	-	IC		-
ft	tsf	-	-	tsf		(psi)	8	Zon		Description		pcf	N	60%	60%		8		tsf	-		Indx	-
	221.7				5.6	6.5	2.6	5		SAND to sandy		120	4.0	28	55	24	71	38	-	-		2.16	16
	263.8				5.3	6.2	2.0	5		SAND to sandy		120	4.0	34	66	27	77	39	-	-		2.04	16
	274.6				5.2	6.0	1.9	5		SAND to sandy		120	4.0	35	69	28	78	39	-	-		2.01	16
	260.4				5.5	6.1		5		SAND to sandy		120 120	4.0	33 36	65 70	27 28	76 79	39 39	-	-		2.06	16 16
	279.6				6.1 5.9	5.5	2.2 1.7	5 6		SAND to sandy SAND to silty		120	4.0	36	70	28 34	86	39 40	_	_		2.05 1.89	16
	401.3				6.0		1.5	6		SAND to silty		125	5.0	41	80	37	90	41	_	_		1.82	16
	415.3				5.8	7.6	1.4	6		SAND to silty		125	5.0	42	83	38	91	41	-	-		1.79	16
	420.1				5.4	6.9	1.3	6		SAND to silty		125	5.0	42	84	38	92	41	-	-		1.76	16
	475.2				5.3	7.9	1.1	6		SAND to silty		125	5.0	48	95	42	95	42	-	-	6	1.68	16
63.49	495.0	249.3	249.3	495.2	4.8	7.6	1.0	6	clean	SAND to silty	SAND	125	5.0	50	99	43	95	42	-	-	5	1.62	16
	491.8				4.8	8.1		6		SAND to silty		125	5.0	49	98	42	95	42	-	-		1.62	16
	485.3				4.8	7.7		6		SAND to silty		125	5.0	49	97	42	95	42	-	-		1.63	16
	491.4				4.4	7.6	0.9	6		SAND to silty		125	5.0	49	98	42	95	42	-	-		1.60	16
	503.7				4.6	8.1		6		SAND to silty		125	5.0	50	100	43	95	42	-	-		1.60	16
	510.4				4.9	8.6 7.6	1.0	6		SAND to silty		125	5.0	51 49	100 98	44 42	95 95	42 42	-	-		1.61 1.62	16 16
	490.4 456.8				4.8 4.7	7.8	1.0	6 6		SAND to silty SAND to silty		125 125	5.0 5.0	49 46	98 91	42	95 94	42	_	_		1.62	16
	450.8				4.5	7.0		6		SAND to silty		125	5.0	40	92	40	95	42		_		1.65	16
	449.2				4.9	7.0	1.1	6		SAND to silty		125	5.0	45	90	39	94	41	-	-		1.69	16
	441.1				5.1	6.9	1.2	6		SAND to silty		125	5.0	44	88	39	93	41	-	-		1.72	16
	445.8				5.8	7.2		6		SAND to silty		125	5.0	44	89	40	93	41	-	-	7	1.75	16
65.46	449.1	222.5	244.5	449.2	6.6	7.6	1.5	6	clean	SAND to silty	SAND	125	5.0	45	90	40	93	41	-	-	8	1.79	16
	450.9				7.3	8.3		6		SAND to silty		125	5.0	45	90	41	93	41	-	-		1.82	16
	446.8				7.9	8.8	1.8	6		SAND to silty		125	5.0	44	89	41	93	41	-	-		1.86	16
	440.9				7.8	8.5	1.8	6		SAND to silty		125	5.0	44	88	41	93	41	-	-		1.86	16
	452.7				8.2	8.8	1.8	6		SAND to silty		125	5.0	45	91	42	93	41	-	-		1.86	16
	460.2 436.1				8.6 8.6	9.0 7.8	1.9 2.0	6 6		SAND to silty SAND to silty		125 125	5.0 5.0	45 43	92 87	42 41	94 92	41 41	_	-		1.87 1.90	16 16
	436.1				8.7	8.1	2.0	6		SAND to silty		125	5.0	43	90	41	92	41	_	_		1.89	16
	431.6				8.5	8.4		6		SAND to silty		125	5.0	42	86	40	92	41	_	_		1.90	16
	450.6				7.9	8.3		6		SAND to silty		125	5.0	44	90	41	93	41	-	-		1.85	16
	446.6				7.4	8.6	1.7	6		SAND to silty		125	5.0	44	89	40	93	41	-	-	9	1.83	16
67.26	425.0	207.6	233.3	425.2	6.5	7.4	1.5	6	clean	SAND to silty	SAND	125	5.0	42	85	38	91	41	-	-	9	1.82	16
67.42	429.2	209.4	230.8	429.4	6.1	7.4	1.4	6	clean	SAND to silty	SAND	125	5.0	42	86	38	91	41	-	-	8	1.79	16
	422.6				6.8			6		SAND to silty		125	5.0	41	85	38	91	41	-	-		1.84	16
	423.6				7.4	7.9	1.8	6		SAND to silty		125	5.0	41	85	39	91	41	-	-		1.87	16
	412.5				7.7	9.3	1.9	6		SAND to silty		125	5.0	40	82	38	90	41	-	-		1.90	16
	429.9 401.2				7.6 7.6	9.5 7.9	1.8 1.9	6 6		SAND to silty SAND to silty		125 125	5.0 5.0	42 39	86 80	39 37	91 89	41 41	-	-		1.87 1.92	16 16
	401.2				7.0		1.9	6		SAND to silty		125	5.0	39 41	85	38	89 91	41	_	_		1.92	16
	420.5				6.6	8.1	1.6	6		SAND to silty		125	5.0	41	84	38	90	41	_	_		1.84	16
	417.5				6.8	8.9	1.6	6		SAND to silty		125	5.0	40	83	37	90	41	-	-		1.85	16
	426.0				6.9	8.7		6		SAND to silty		125	5.0	41	85	38	91	41	_	-		1.85	16
	422.8				7.0	8.7		6		SAND to silty		125	5.0	41	85	38	90	41	-	-		1.86	16
69.23	422.6	203.3	234.2	422.8	7.1	9.6	1.7	6	clean	SAND to silty	SAND	125	5.0	41	85	38	90	41	-	-	9	1.86	16
	416.0				7.0	9.5	1.7	6		SAND to silty		125	5.0	40	83	37	90	41	-	-		1.86	16
	417.3				6.4	9.5	1.5	6		SAND to silty		125	5.0	40	83	37	90	41	-	-		1.83	16
	419.4				6.1		1.5	6		SAND to silty		125	5.0	40	84	37	90	41	-	-		1.82	16
69.89	432.4	206.9	227.9	43∠.6	6.0	9.7	1.4	6	ciean	SAND to silty	SAND	125	5.0	41	86	38	91	41	-	-	8	1.79	16

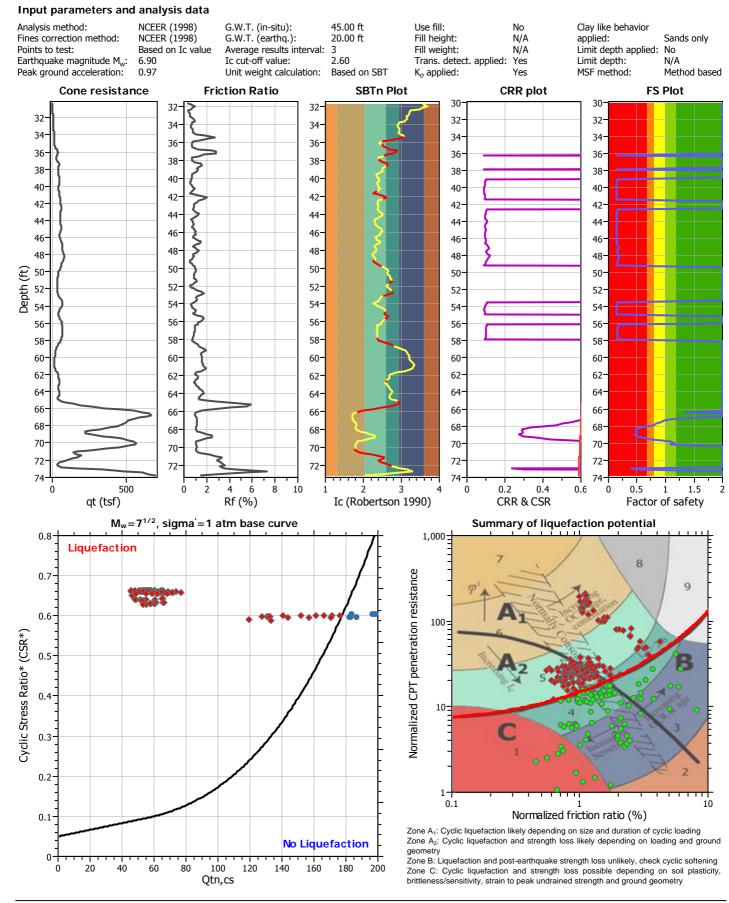
* Indicates the parameter was calculated using the normalized point stress. The parameters listed above were determined using empirical correlations. A Professional Engineer must determine their suitability for analysis and design.

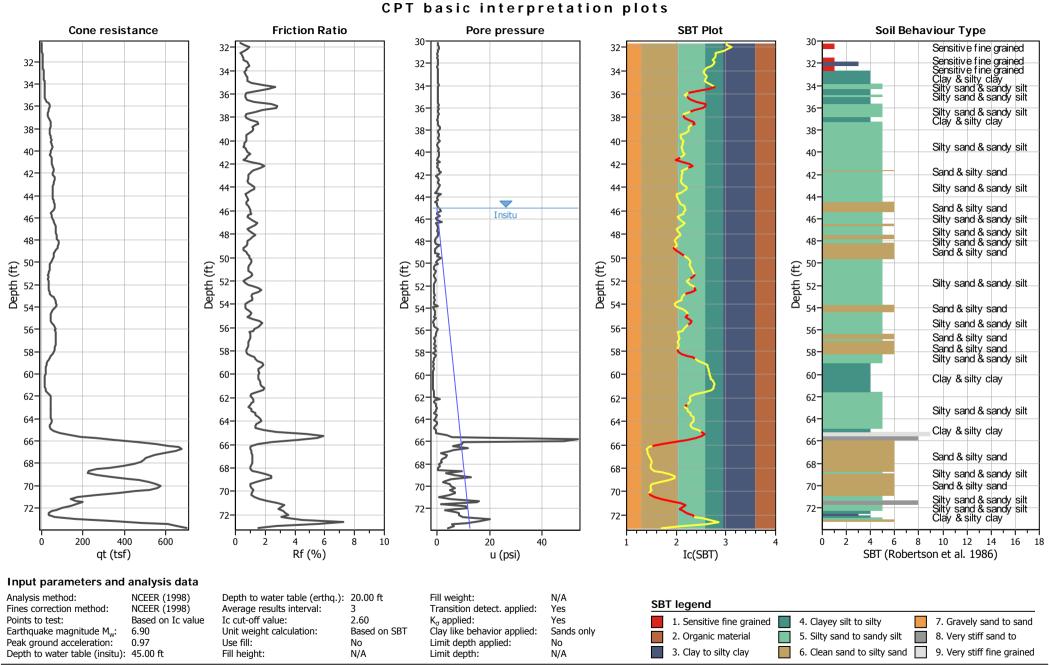
Middle Earth Geo Testing

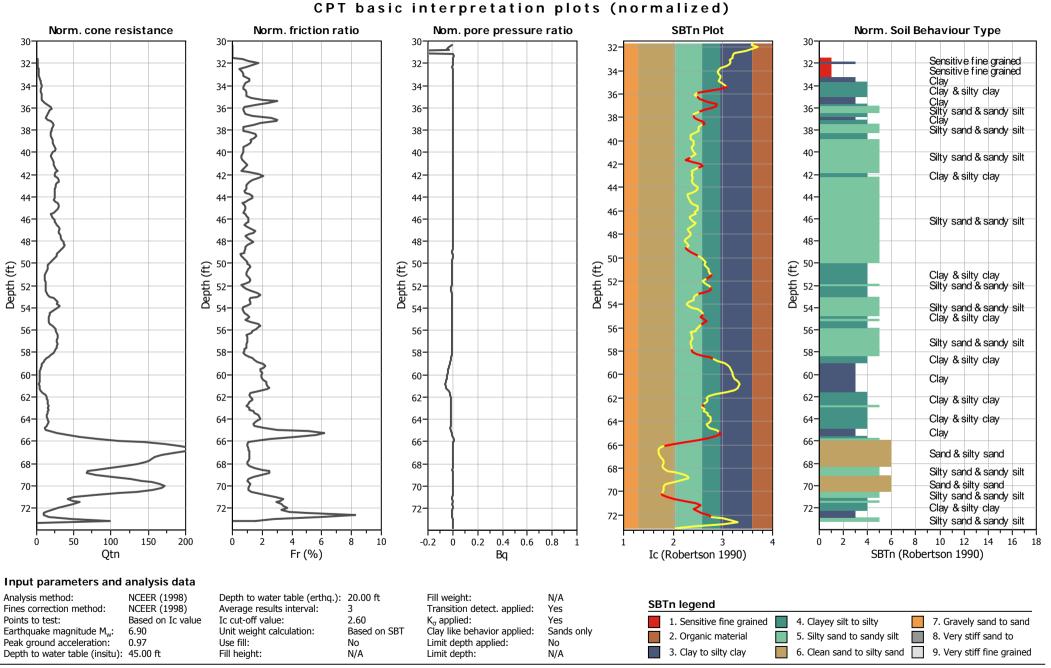




Geotechnical Engineers Merarhias 56


http://www.geologismiki.gr

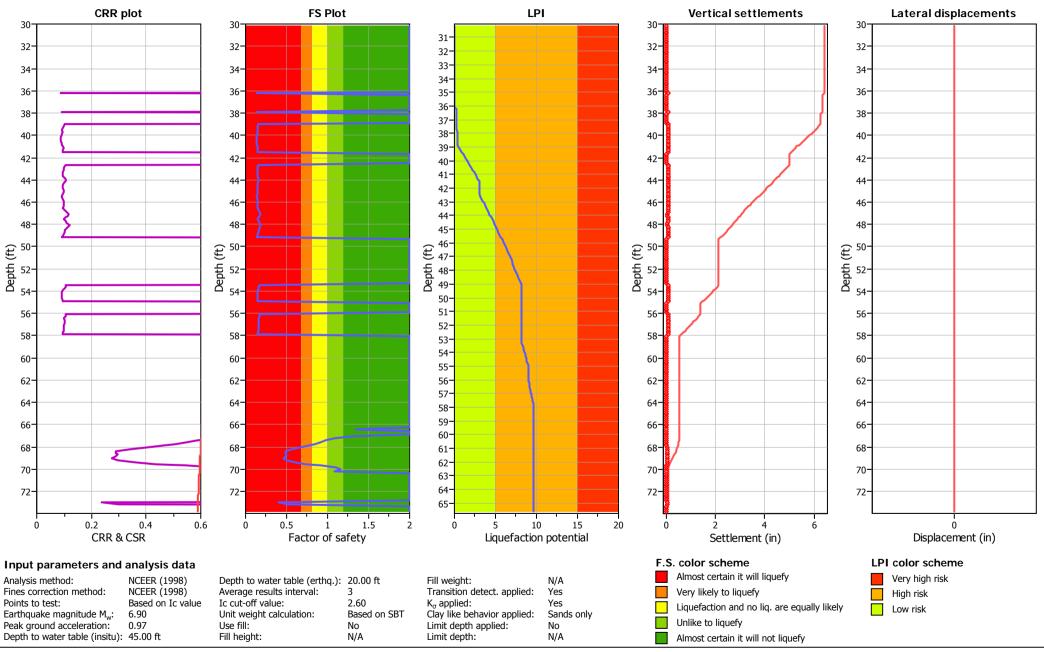

## LIQUEFACTION ANALYSIS REPORT


### Project title : 21545 - TF Boadway LP

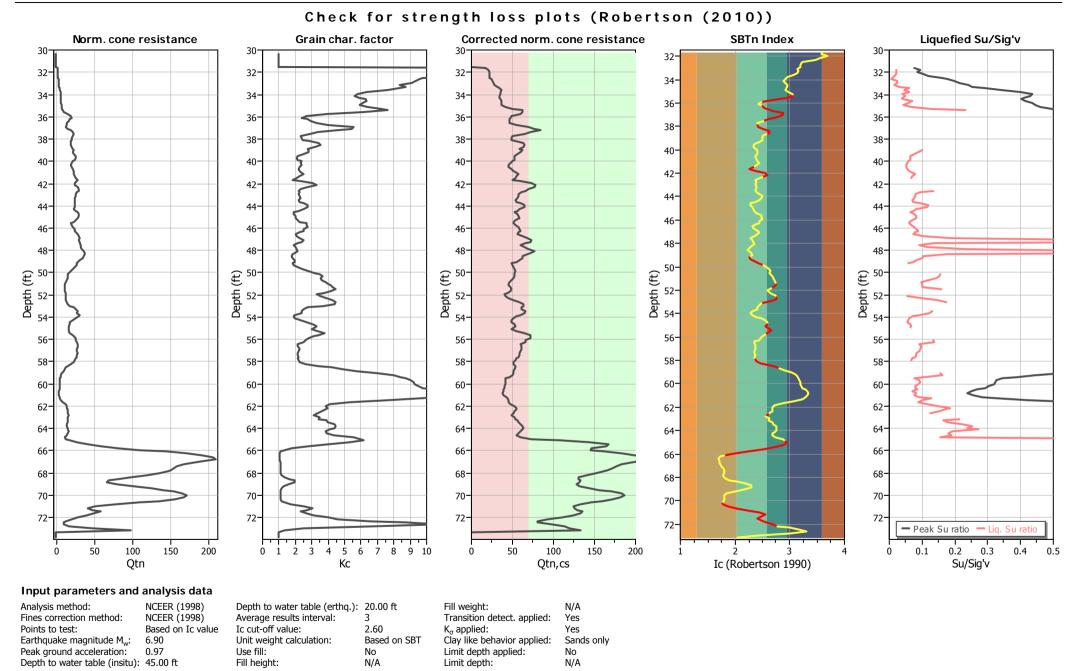
CPT file : CPT-01

#### Location : 942 N. Broadway, Los Angeles, CA







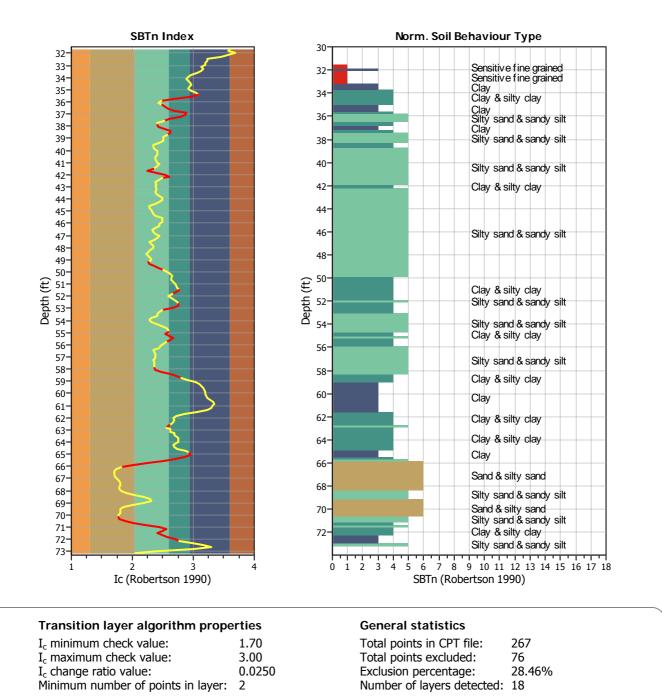


CLig v.2.0.6.92 - CPT Liguefaction Assessment Software - Report created on: 9/12/2018, 11:58:41 AM Project file: C:\Users\sprince\Desktop\21545 - TF Broadway LP (2%) 30 Foot Adjusted.clg

CPT name: CPT-01

3



Liquefaction analysis overall plots




## TRANSITION LAYER DETECTION ALGORITHM REPORT Summary Details & Plots

### Short description

The software will delete data when the cone is in transition from either clay to sand or vise-versa. To do this the software requires a range of  $I_c$  values over which the transition will be defined (typically somewhere between 1.80 <  $I_c$  < 3.0) and a rate of change of  $I_c$ . Transitions typically occur when the rate of change of  $I_c$  is fast (i.e. delta  $I_c$  is small).

The SBT_n plot below, displays in red the detected transition layers based on the parameters listed below the graphs.



:: Field inp	ut data ::						
Point ID	Depth	q _c	fs	u	Fines content	Unit weight	
	(ft)	(tsf)	(tsf)	(tsf)	(%)	(pcf)	
1	30.16	-0.01	0.00	0.08	N/A	120.90	
2	30.33	-0.03	0.00	0.08	N/A	87.36	
3	30.49	0.20	0.00	0.64	N/A	87.36	
4	30.66	0.65	0.00	0.75	N/A	87.36	
5	30.82	1.32	0.00	0.23	N/A	87.36	
6	30.98	1.91	0.00	0.08	N/A	87.36	
7	31.15	2.32	0.00	-0.01	N/A	87.36	
8	31.31	2.73	0.00	0.07	N/A	87.36	
9	31.48	3.27	0.00	-0.01	N/A	87.36	
10	31.64	4.01	0.00	0.04	100.00	87.36	
11	31.80	4.33	0.04	0.06	100.00	87.37	
12	31.97	4.87	0.04	0.05	100.00	90.22	
13	32.13	3.38	0.04	0.05	100.00	89.85	
14	32.30	5.81	0.03	-0.12	95.22	88.59	
15	32.46	6.14	0.02	0.11	75.96	87.36	
16	32.62	6.89	0.01	0.11	74.69	88.41	
17	32.79	7.18	0.05	0.19	73.30	90.94	
18	32.95	7.91	0.05	0.16	72.18	92.30	
19	33.12	8.13	0.03	0.09	67.93	93.07	
20	33.28	9.49	0.06	0.18	70.19	96.16	
21	33.44	9.22	0.12	0.16	67.91	98.25	
22	33.61	11.10	0.09	0.18	63.56	100.06	
23	33.77	13.94	0.12	0.19	55.86	99.44	
24	33.94	14.15	0.08	0.47	52.78	99.88	
25	34.10	14.28	0.10	0.27	51.56	98.82	
26	34.27	13.67	0.08	0.25	53.37	98.73	
27	34.43	12.66	0.08	0.18	55.63	99.76	
28	34.59	13.90	0.14	0.34	55.85	100.75	
29	34.76	14.91	0.12	0.17	54.40	101.06	
30	34.92	14.44	0.09	0.33	53.41	101.12	
31	35.09	14.94	0.14	0.12	56.39	103.82	
32	35.25	16.58	0.27	0.20	61.41	108.21	
33	35.41	17.73	0.48	0.20	63.60	112.46	
34	35.58	22.25	0.77	0.09	54.76	113.05	
35	35.74	29.21	0.29	0.41	39.85	112.96	
36	35.91	43.47	0.31	0.20	29.66	109.63	
37	36.07	36.03	0.23	0.60	27.29	109.33	
38	36.23	36.32	0.24	0.13	30.30	108.44	
39	36.40	29.92	0.25	0.28	32.24	108.18	
40	36.56	29.72	0.22	0.46	35.00	107.98	
41	36.73	28.83	0.24	0.38	40.28	111.25	
42	36.89	30.00	0.65	0.27	50.88	115.89	
43	37.05	27.58	1.22	-0.04	50.31	118.03	
44	37.22	39.24	0.85	0.17	44.89	119.98	
45	37.38	52.68	1.24	0.07	35.78	117.84	
46	37.55	41.88	0.29	0.39	31.45	115.86	
47	37.71	42.78	0.27	0.97	26.50	110.70	
48	37.87	43.40	0.35	0.94	26.93	110.02	

Field inp	ut data :: (	continued	)				
oint ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
49	38.04	37.07	0.22	0.20	27.77	110.05	
50	38.20	39.98	0.28	0.09	31.59	112.28	
51	38.37	40.95	0.66	0.45	36.29	115.35	
52	38.53	38.30	0.82	0.51	36.90	115.77	
53	38.69	40.65	0.38	0.20	34.05	115.43	
54	38.86	48.32	0.54	0.51	30.71	114.41	
55	39.02	44.63	0.57	0.85	31.00	115.52	
56	39.19	46.47	0.60	0.11	30.94	114.62	
57	39.35	43.42	0.36	-0.22	28.01	113.65	
58	39.51	50.90	0.36	0.11	24.25	112.27	
59	39.68	55.83	0.35	0.50	24.02	112.45	
60	39.84	45.97	0.38	0.11	24.76	112.31	
61	40.01	46.59	0.35	0.57	27.12	111.07	
62	40.17	38.60	0.22	0.66	26.67	109.73	
63	40.33	41.29	0.23	0.71	27.00	108.85	
64	40.50	41.48	0.27	0.03	25.54	109.10	
65	40.66	45.88	0.23	-0.18	25.26	110.63	
66	40.83	50.50	0.38	0.88	26.09	111.92	
67	40.99	45.14	0.43	-0.10	26.70	112.97	
68	41.15	49.46	0.38	0.19	28.47	114.32	
69	41.32	51.30	0.62	-0.16	25.88	113.64	
70	41.48	52.98	0.28	0.73	23.93	113.16	
71	41.65	56.54	0.28	0.46	20.82	111.61	
72	41.81	59.46	0.38	1.48	26.34	115.79	
73	41.98	51.02	1.01	0.48	32.84	119.24	
74	42.14	52.19	1.31	-0.42	35.29	120.50	
75	42.30	59.34	0.89	0.07	30.48	120.52	
76	42.47	73.60	0.88	0.57	26.60	119.04	
77	42.63	60.52	0.71	0.33	25.39	117.93	
78	42.80	57.03	0.55	0.29	26.05	116.23	
79	42.80	56.20	0.33	1.12	25.37	115.03	
80	42.90	55.54	0.49	0.70	26.00	113.03	
81	43.29	53.22	0.40	0.30	26.18	114.58	
82	43.45	53.19	0.34	-0.12	25.42	114.58	
83	43.45	54.07	0.43	-0.12	25.42	113.75	
83 84	43.62	54.07	0.31	-0.81	25.91	114.26	
85	43.78	55.29	0.83	0.19	30.35	117.37	
85 86	43.94	53.29	0.79	-0.18	30.35	117.37	
80	44.11			0.18	28.50	117.30	
87 88	44.27	54.73 50.34	0.61 0.34	-0.79	28.50	115.44	
88 89	44.44	63.55	0.34	0.79	25.22	114.52	
89 90	44.60	65.89	0.45	-0.12	21.77	115.24	
90 91	44.76			0.12	22.93	115.62	
		63.55	0.63				
92	45.09	62.02	0.57	0.80	23.58	115.72	
93 04	45.26	62.67	0.39	1.18	24.51	114.06	
94 95	45.42	45.69	0.35	-0.07	25.76	112.54	
	45.58	45.66	0.36	-0.12	30.00	112.48	

Field inp	ut data :: (	continued	)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
97	45.91	50.81	0.49	-0.63	30.28	114.86	
98	46.08	53.73	0.61	-0.02	28.01	115.66	
99	46.24	59.82	0.55	1.72	28.09	116.23	
100	46.40	54.69	0.61	-0.60	25.74	115.55	
101	46.57	60.99	0.43	0.01	23.44	114.89	
102	46.73	68.19	0.39	0.26	24.20	117.44	
103	46.90	71.35	1.15	0.27	25.65	119.31	
104	47.06	69.23	0.97	-0.01	28.09	120.62	
105	47.22	65.93	0.89	0.69	27.11	120.22	
106	47.39	73.55	0.98	0.31	24.59	118.66	
107	47.55	70.35	0.42	0.22	21.82	116.65	
108	47.72	66.61	0.34	-0.56	22.99	118.05	
109	47.88	78.50	1.33	-0.91	24.16	119.68	
110	48.04	78.57	0.91	-0.89	24.35	121.73	
111	48.21	88.18	1.07	-0.64	22.60	120.39	
112	48.37	76.86	0.78	0.98	20.99	119.42	
113	48.54	81.11	0.56	0.01	20.17	117.55	
114	48.70	75.12	0.56	-0.82	21.00	117.38	
115	48.86	68.69	0.76	-0.78	22.22	116.15	
116	49.03	60.73	0.32	-0.93	22.83	114.86	
117	49.19	60.54	0.33	0.56	20.86	111.68	
118	49.36	58.15	0.28	-0.20	21.82	112.26	
119	49.52	58.71	0.40	1.29	24.53	113.41	
120	49.69	52.74	0.52	0.09	27.54	113.62	
121	49.85	44.52	0.35	-0.52	31.15	113.66	
122	50.01	43.79	0.35	0.02	33.91	112.89	
123	50.18	38.83	0.43	-0.95	36.37	113.17	
124	50.34	38.45	0.42	-1.28	37.77	112.76	
125	50.51	37.94	0.40	-1.16	37.10	112.13	
125	50.67	37.84	0.33	-0.52	37.31	112.15	
120	50.83	32.95	0.33	-1.01	39.24	109.84	
127	51.00	28.68	0.27	-1.01	40.66	109.28	
129 130	51.16	32.74	0.28 0.28	-1.21	41.52 42.48	109.33 110.68	
	51.33	31.39		-0.95	42.48		
131 132	51.49 51.65	31.68 31.06	0.44 0.33	-0.38 -1.09	43.91 41.69	110.99 110.57	
132	51.65	31.06	0.33	-1.09	38.22	108.41	
133					38.22 34.98	108.41	
	51.98	31.68	0.19	-1.28			
135	52.15	31.94	0.15	-1.24	37.02	107.19	
136	52.31	32.35	0.28	-1.36	39.55	109.56	
137	52.47	34.26	0.42	-1.45	42.38	112.11	
138	52.64	35.59	0.49	-1.36	43.54	114.95	
139	52.80	42.41	0.79	-0.92	43.35	116.88	
140	52.97	44.72	0.87	-1.23	38.00	117.29	
141	53.13	53.78	0.51	-1.37	30.21	117.00	
142 143	53.29	71.10	0.58	-1.12	28.03	117.37	
	53.46	58.65	0.92	-1.19	26.92	118.78	

: Field inp	ut data :: (	continued	I)				
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
145	53.79	68.19	0.52	0.35	22.89	117.18	
146	53.95	73.19	0.48	-1.62	21.65	115.03	
147	54.11	62.27	0.41	-1.31	22.84	113.48	
148	54.28	48.39	0.29	-1.09	26.16	112.25	
149	54.44	46.95	0.35	-0.83	29.82	111.81	
150	54.61	43.88	0.39	-0.76	33.22	113.32	
151	54.77	44.21	0.54	-1.38	34.85	113.82	
152	54.93	44.24	0.45	-0.63	34.60	113.48	
153	55.10	42.99	0.33	-1.25	32.81	111.91	
154	55.26	42.13	0.29	-1.59	35.53	114.52	
155	55.43	49.16	0.89	-1.43	38.73	117.72	
156	55.59	51.80	1.11	-1.45	36.16	120.30	
157	55.75	70.29	1.07	-0.89	33.44	120.38	
158	55.92	61.92	0.85	0.04	30.81	120.49	
159	56.08	66.04	1.08	-0.03	29.22	118.94	
160	56.25	64.90	0.52	-0.53	28.10	119.13	
161	56.41	70.03	0.88	-0.64	24.39	117.30	
162	56.57	72.13	0.51	-0.80	24.85	117.76	
163	56.74	66.33	0.64	-1.26	25.17	117.69	
164	56.90	67.54	0.87	-1.05	25.62	117.49	
165	57.07	67.69	0.47	-0.92	25.30	117.27	
166	57.23	66.51	0.58	-1.51	24.37	116.68	
167	57.40	68.42	0.72	-0.57	24.73	116.66	
168	57.56	65.29	0.47	-1.28	25.15	116.34	
169	57.72	61.41	0.52	-0.99	24.84	115.25	
170	57.89	61.63	0.50	-0.70	25.15	114.54	
171	58.05	58.31	0.35	-1.59	25.76	113.68	
172	58.22	52.12	0.39	-0.68	29.36	113.40	
173	58.38	42.79	0.50	-0.85	36.29	113.96	
174	58.54	36.11	0.52	-1.26	41.85	113.73	
175	58.71	35.53	0.41	-1.37	46.62	113.06	
176	58.87	29.32	0.43	-1.71	52.07	112.41	
177	59.04	23.83	0.46	-1.19	60.26	112.42	
178	59.20	22.80	0.48	-1.52	65.72	111.41	
179	59.36	19.48	0.31	-1.45	68.33	109.65	
180	59.53	16.90	0.23	-1.48	70.13	107.72	
181	59.69	17.25	0.27	-1.64	71.64	107.36	
182	59.86	17.57	0.28	-1.65	72.89	107.71	
183	60.02	16.55	0.27	-1.57	72.96	107.41	
184	60.18	16.72	0.24	-1.70	74.47	106.93	
185	60.35	15.62	0.24	-1.54	75.77	106.77	
186	60.51	15.38	0.26	-1.62	79.29	106.31	
187	60.68	13.63	0.21	-1.66	82.84	106.29	
188	60.84	13.45	0.25	-1.58	84.49	105.89	
189	61.00	13.94	0.23	-1.63	82.57	106.73	
190	61.17	15.96	0.28	-1.63	80.46	108.17	
191	61.33	17.05	0.39	-1.52	75.42	109.05	
192	61.50	19.25	0.31	-1.39	63.55	109.50	

ieiu irip	ut data :: (	(continued)	)				
oint ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
193	61.66	28.54	0.27	-1.47	49.47	109.88	
194	61.82	38.01	0.35	-1.48	41.22	111.54	
195	61.99	41.58	0.46	-1.51	39.09	113.65	
196	62.15	43.72	0.57	1.11	40.03	114.54	
197	62.32	39.99	0.52	-1.10	39.09	114.65	
198	62.48	44.97	0.47	-1.39	37.37	113.71	
199	62.64	43.97	0.38	-0.55	35.56	113.46	
200	62.81	44.46	0.46	-0.68	33.59	112.40	
201	62.97	46.00	0.29	-0.26	36.47	114.01	
202	63.14	43.14	0.66	-0.71	36.28	114.30	
203	63.30	46.80	0.51	-0.49	39.99	115.41	
204	63.46	40.86	0.55	-1.17	40.23	115.54	
205	63.63	43.24	0.69	-0.13	43.14	116.54	
206	63.79	44.42	0.78	-0.40	43.70	117.25	
207	63.96	43.42	0.74	-0.82	43.09	117.82	
208	64.12	48.44	0.84	-1.40	41.24	117.28	
209	64.28	46.60	0.60	-0.17	39.20	116.70	
210	64.45	46.32	0.56	-0.29	39.90	115.57	
211	64.61	39.82	0.59	-1.09	42.66	114.88	
212	64.78	35.47	0.49	-1.43	50.85	116.50	
213	64.94	35.58	1.03	-0.56	53.73	120.39	
214	65.10	54.17	1.93	-0.70	54.98	127.74	
215	65.27	85.95	5.45	-0.55	49.56	133.35	
216	65.43	127.06	8.35	3.75	40.80	136.81	
217	65.60	188.65	8.25	5.42	31.25	137.28	
218	65.76	244.91	6.59	53.84	20.70	137.28	
219	65.93	347.80	4.59	48.39	13.19	137.00	
220	66.09	465.91	5.20	9.97	8.40	136.86	
221	66.25	566.03	4.91	9.56	6.89	137.28	
222	66.42	616.24	6.46	5.85	6.10	137.28	
223	66.58	661.06	6.76	11.76	6.21	137.28	
223	66.75	708.99	8.12	5.86	6.26	137.28	
225	66.91	654.96	7.40	4.97	6.59	137.28	
225	67.07	578.23	6.14	1.37	7.08	137.28	
220	67.24	548.36	6.22	3.81	7.76	137.28	
227	67.40	548.36	6.04	3.24	8.29	137.28	
228	67.57	491.34	5.59	1.55	8.29	137.28	
229	67.73	513.78	5.16	1.55	7.98	137.28	
230	67.89	469.63	4.70	1.40	8.01	137.28	
231	68.06	469.63	4.70	0.43	8.61	136.90	
232	68.06	449.76	4.74	0.43	10.27	136.21	
233	68.39	407.44 313.78	4.20	0.94	10.27	135.66	
234	68.55			0.38	18.73	135.00	
		247.96	5.40				
236	68.71	229.16	6.08	9.51	22.39	136.00	
237	68.88	205.09	5.06	3.31	22.74	135.84	
238	69.04 69.21	233.70 356.94	5.16 4.85	6.55 12.96	18.11 13.02	135.69 135.77	
239		55n 44	4 85	17 Yh	1511/	117 //	

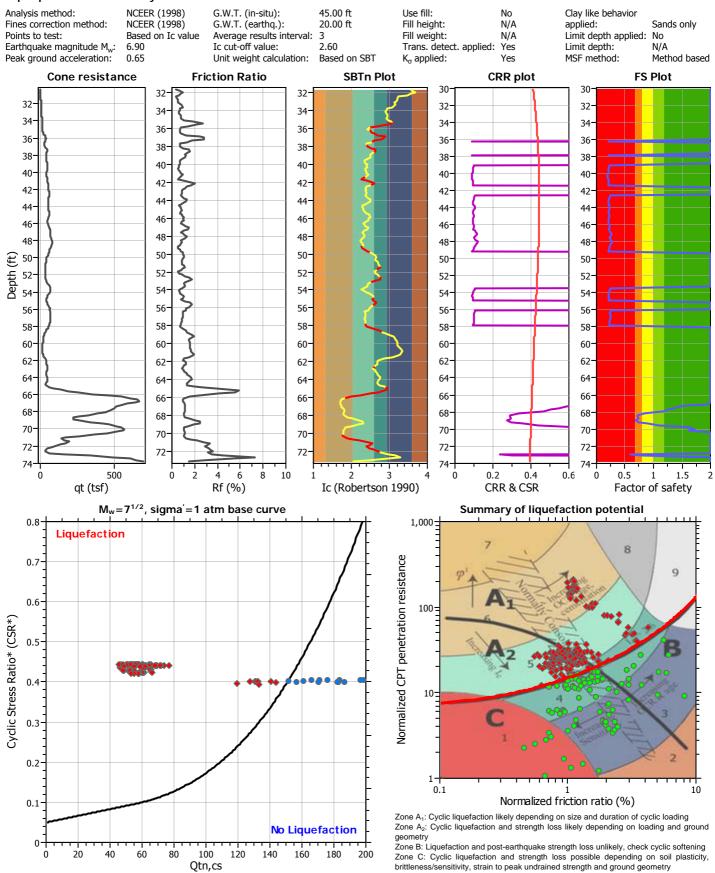
:: Field inp	ut data :: (	(continue	d)			
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)
241	69.53	476.36	4.16	2.94	8.24	136.71
242	69.70	509.44	6.13	2.29	8.06	137.28
243	69.86	561.20	6.56	4.90	8.12	137.28
244	70.03	586.42	6.81	5.00	7.65	137.28
245	70.19	572.12	6.14	6.88	7.49	137.28
246	70.35	528.85	5.34	4.65	7.96	137.28
247	70.52	470.05	5.52	6.84	10.01	137.28
248	70.68	361.27	6.24	6.61	13.59	137.28
249	70.85	283.50	6.22	4.45	19.67	136.61
250	71.01	148.91	4.63	0.78	28.10	134.30
251	71.17	81.82	3.55	5.25	33.03	133.67
252	71.34	196.24	5.89	16.02	30.07	134.68
253	71.50	215.86	5.93	15.02	26.62	136.09
254	71.67	186.69	5.67	1.45	30.00	135.26
255	71.83	109.96	4.84	10.86	33.84	133.47
256	71.99	117.11	3.32	11.48	40.82	130.55
257	72.16	65.31	2.25	2.98	44.42	126.86
258	72.32	38.67	1.33	7.08	57.52	123.04
259	72.49	33.95	1.21	8.37	69.79	122.51
260	72.65	34.79	2.30	8.32	80.86	125.83
261	72.81	36.67	4.16	9.73	58.80	129.19
262	72.98	111.38	3.64	20.16	28.45	133.78
263	73.14	349.98	5.76	16.42	14.10	136.53
264	73.31	559.87	6.15	11.40	N/A	137.28
265	73.47	554.16	-260034.6	5.69	N/A	137.28
266	73.64	711.57	7 -260034.6 7	6.46	N/A	137.28
267	73.80	694.37	-260Ú34.6 7	4.11	N/A	137.28

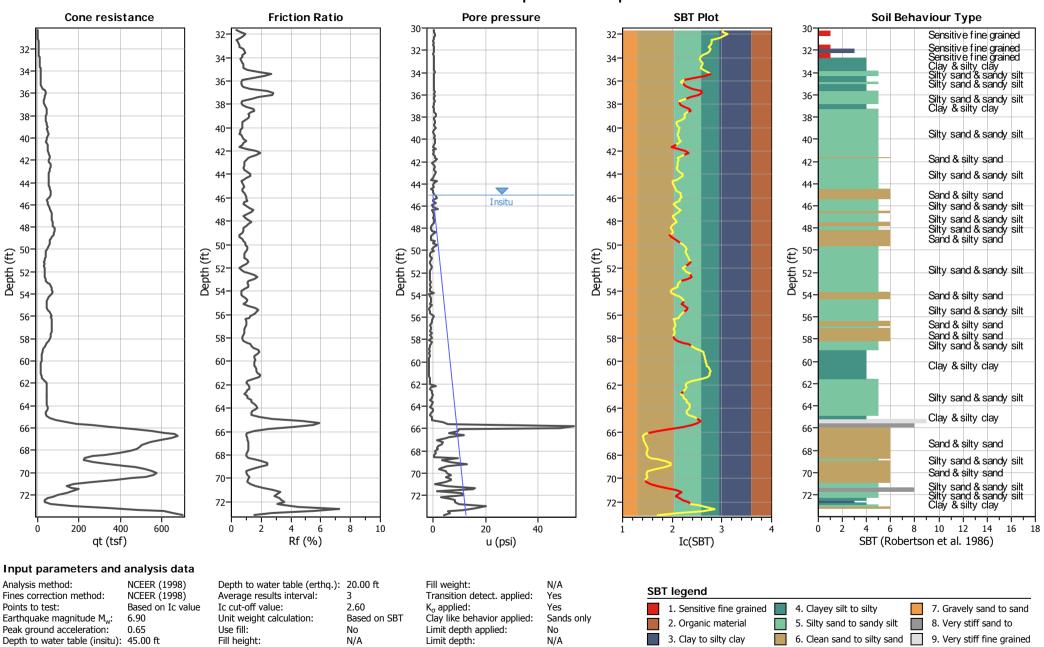
### Abbreviations

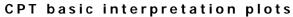


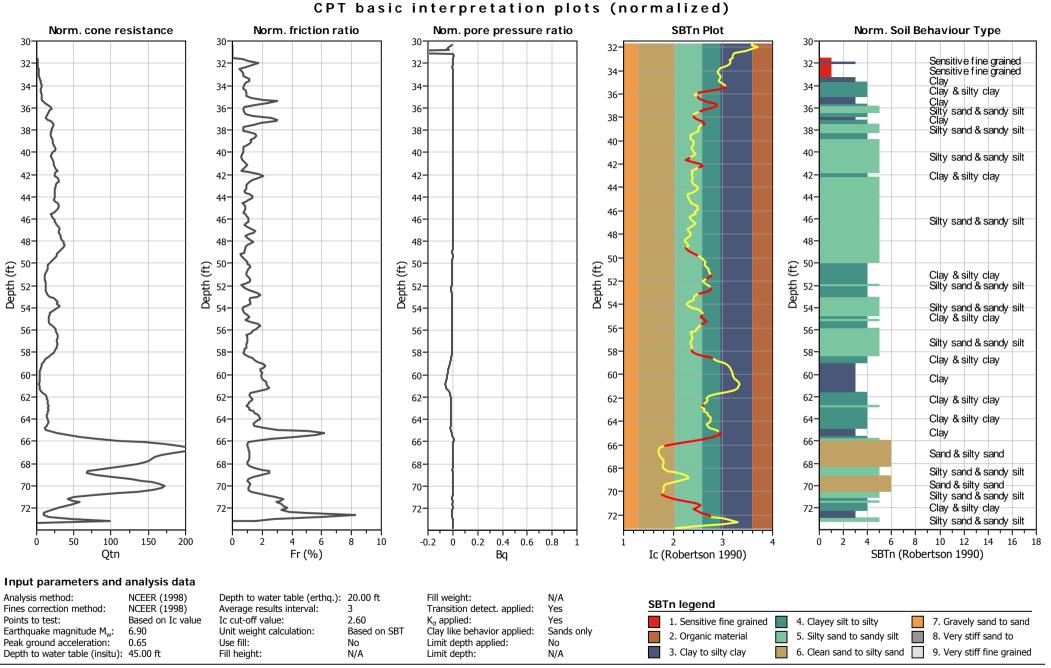


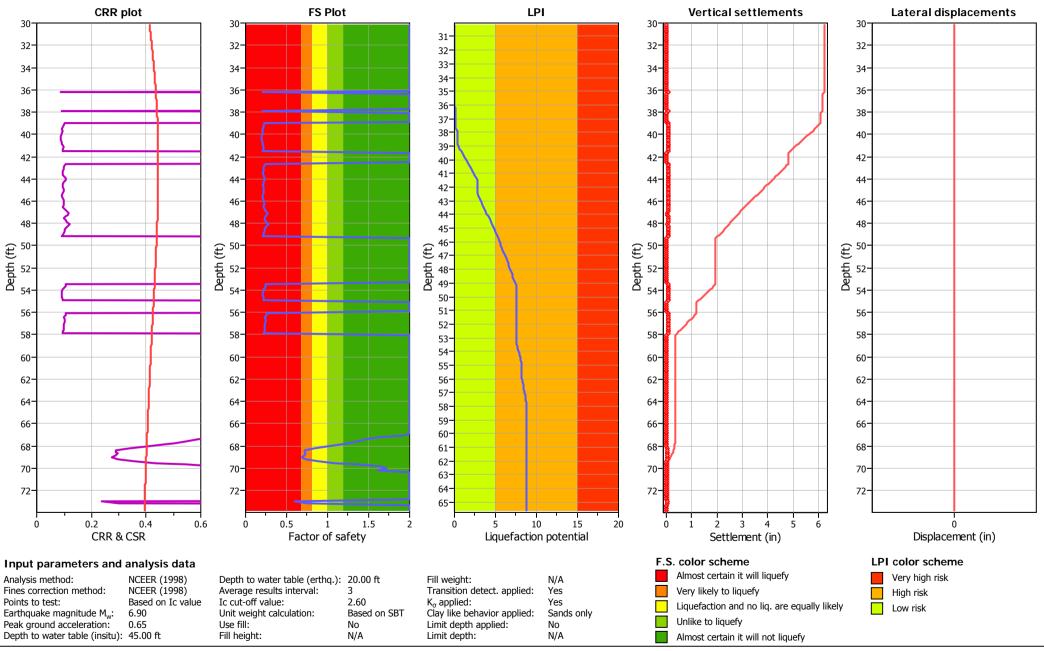
Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr


LIQUEFACTION ANALYSIS REPORT

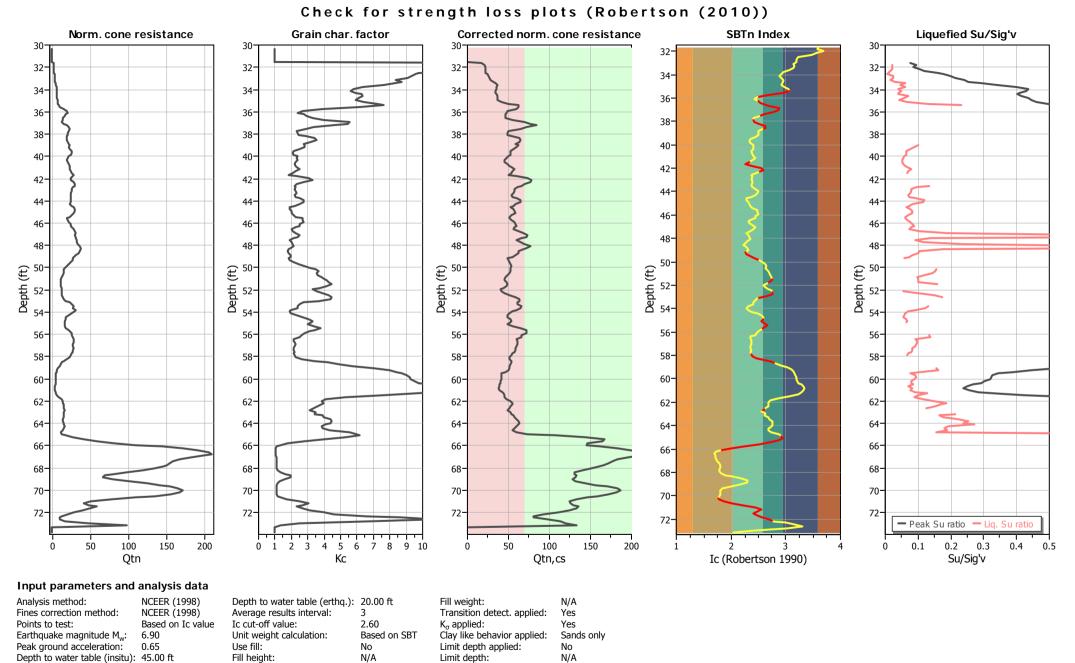

### Project title : 21545 - TF Boadway LP


#### Location : 942 N. Broadway, Los Angeles, CA





#### Input parameters and analysis data



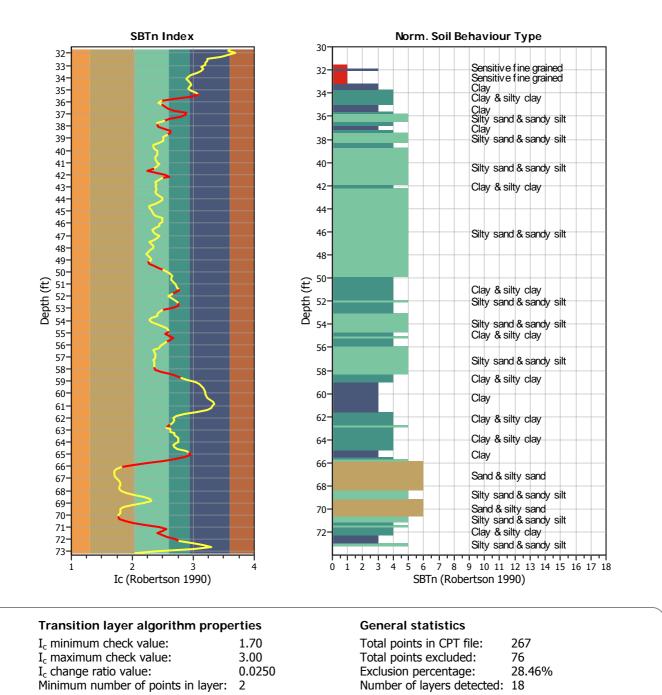









Liquefaction analysis overall plots




## TRANSITION LAYER DETECTION ALGORITHM REPORT Summary Details & Plots

### Short description

The software will delete data when the cone is in transition from either clay to sand or vise-versa. To do this the software requires a range of  $I_c$  values over which the transition will be defined (typically somewhere between 1.80 <  $I_c$  < 3.0) and a rate of change of  $I_c$ . Transitions typically occur when the rate of change of  $I_c$  is fast (i.e. delta  $I_c$  is small).

The SBT_n plot below, displays in red the detected transition layers based on the parameters listed below the graphs.



:: Field inp	ut data ::						
Point ID	Depth	q _c	fs	u	Fines content	Unit weight	
	(ft)	(tsf)	(tsf)	(tsf)	(%)	(pcf)	
1	30.16	-0.01	0.00	0.08	N/A	120.90	
2	30.33	-0.03	0.00	0.08	N/A	87.36	
3	30.49	0.20	0.00	0.64	N/A	87.36	
4	30.66	0.65	0.00	0.75	N/A	87.36	
5	30.82	1.32	0.00	0.23	N/A	87.36	
6	30.98	1.91	0.00	0.08	N/A	87.36	
7	31.15	2.32	0.00	-0.01	N/A	87.36	
8	31.31	2.73	0.00	0.07	N/A	87.36	
9	31.48	3.27	0.00	-0.01	N/A	87.36	
10	31.64	4.01	0.00	0.04	100.00	87.36	
11	31.80	4.33	0.04	0.06	100.00	87.37	
12	31.97	4.87	0.04	0.05	100.00	90.22	
13	32.13	3.38	0.04	0.05	100.00	89.85	
14	32.30	5.81	0.03	-0.12	95.22	88.59	
15	32.46	6.14	0.02	0.11	75.96	87.36	
16	32.62	6.89	0.01	0.11	74.69	88.41	
17	32.79	7.18	0.05	0.19	73.30	90.94	
18	32.95	7.91	0.05	0.16	72.18	92.30	
19	33.12	8.13	0.03	0.09	67.93	93.07	
20	33.28	9.49	0.06	0.18	70.19	96.16	
21	33.44	9.22	0.12	0.16	67.91	98.25	
22	33.61	11.10	0.09	0.18	63.56	100.06	
23	33.77	13.94	0.12	0.19	55.86	99.44	
24	33.94	14.15	0.08	0.47	52.78	99.88	
25	34.10	14.28	0.10	0.27	51.56	98.82	
26	34.27	13.67	0.08	0.25	53.37	98.73	
27	34.43	12.66	0.08	0.18	55.63	99.76	
28	34.59	13.90	0.14	0.34	55.85	100.75	
29	34.76	14.91	0.12	0.17	54.40	101.06	
30	34.92	14.44	0.09	0.33	53.41	101.12	
31	35.09	14.94	0.14	0.12	56.39	103.82	
32	35.25	16.58	0.27	0.20	61.41	108.21	
33	35.41	17.73	0.48	0.20	63.60	112.46	
34	35.58	22.25	0.77	0.09	54.76	113.05	
35	35.74	29.21	0.29	0.41	39.85	112.96	
36	35.91	43.47	0.31	0.20	29.66	109.63	
37	36.07	36.03	0.23	0.60	27.29	109.33	
38	36.23	36.32	0.24	0.13	30.30	108.44	
39	36.40	29.92	0.25	0.28	32.24	108.18	
40	36.56	29.72	0.22	0.46	35.00	107.98	
41	36.73	28.83	0.24	0.38	40.28	111.25	
42	36.89	30.00	0.65	0.27	50.88	115.89	
43	37.05	27.58	1.22	-0.04	50.31	118.03	
44	37.22	39.24	0.85	0.17	44.89	119.98	
45	37.38	52.68	1.24	0.07	35.78	117.84	
46	37.55	41.88	0.29	0.39	31.45	115.86	
47	37.71	42.78	0.27	0.97	26.50	110.70	
48	37.87	43.40	0.35	0.94	26.93	110.02	

(ħ)         (ts)         (ts)         (ts)         (ts)         (ts)           19         38.04         37.07         0.22         0.20         2.777         110.05           11         38.30         93.98         0.28         0.09         31.59         112.28           12         38.37         40.95         0.66         0.45         36.20         115.37           12         38.35         38.00         0.52         0.51         36.09         115.42           14         38.60         46.32         0.57         0.85         30.00         115.52           15         39.02         46.42         0.66         0.11         24.95         112.27           16         40.01         46.59         0.35         0.50         24.02         112.45           16         40.01         46.59         0.35         0.57         27.12         110.7           16         40.33         41.29         0.23         0.71         27.00         108.85           16         40.33         41.48         0.77         0.03         25.44         109.10           16         40.33         41.48         0.70         0.38         16.9	: Field inp	ut data :: (	(continued	I)				
5038.2039.980.280.0931.59112.281138.3740.950.660.4536.29115.352338.300.820.1136.29115.432338.6940.650.380.2034.05115.432438.6946.220.540.5130.71114.4125639.1946.470.660.1130.94114.622739.3545.420.360.2228.01113.653839.5155.800.350.5727.12110.273935.6855.830.350.5727.12110.673936.6445.970.380.1124.76112.313940.3341.290.320.7127.00108.853040.3341.290.330.5727.00108.853040.3341.290.330.8826.09111.923041.480.720.0325.54100.103641.1540.480.1928.47113.643740.9945.140.430.1928.47113.643841.159.540.280.7325.93113.643941.8452.940.7325.94115.973041.4852.940.7427.93115.613041.4951.940.480.5726.6011.923141.4951.94 <td< th=""><th>Point ID</th><th></th><th>q_c (tsf)</th><th>f_s (tsf)</th><th></th><th></th><th></th><th></th></td<>	Point ID		q _c (tsf)	f _s (tsf)				
1138.3740.990.660.4536.29115.352238.5338.300.620.5136.90115.733336.9040.650.530.2034.05115.431438.8648.320.510.5130.71114.4115539.0244.630.570.8531.00115.5216639.1946.470.360.222.80113.651733.3543.420.360.5024.02112.4518039.8445.970.380.5727.12111.0716140.0145.990.320.5727.12111.071738.600.220.6626.67109.7318140.0145.990.380.5727.12110.6318343.30.590.380.8825.09111.9218440.5041.480.270.0325.54100.1018540.640.380.1926.70112.9718641.1549.460.380.1928.72116.319941.3251.300.520.7323.93113.1619941.3251.300.620.1625.88113.6419941.4852.980.280.7323.93113.1619941.3251.300.5726.05116.1119941.3251.400.890.5726.05116.211	49	38.04	37.07	0.22	0.20	27.77	110.05	
2238.5338.300.820.5136.90115.773338.6940.650.380.2034.05115.434438.6944.320.570.8531.00115.525639.0944.420.600.1130.94114.625739.3543.420.360.1124.25112.275839.5150.900.360.1124.76112.315939.6855.830.350.5727.12111.075240.1738.600.220.6626.67109.735440.3341.290.230.1127.00106.855540.6645.880.23-0.1825.26110.635640.8350.500.380.8826.09111.925640.8350.500.380.8826.09111.925640.8350.500.380.732.58116.615740.461.320.110.4832.49115.795841.1554.600.381.4826.34115.795941.3251.300.620.732.58115.615841.4550.540.380.772.58115.615942.3059.400.380.772.58115.615442.477.500.880.572.60115.215442.350.550.550.550.5615	50	38.20	39.98	0.28	0.09	31.59	112.28	
3338.6940.650.380.2034.05115.434438.8648.320.540.5130.71114.415539.0244.630.570.8531.00115.525639.1946.470.600.1130.94114.625739.3543.420.360.2228.01113.655839.5150.500.5024.02112.455039.8445.970.380.1124.76112.315140.0145.990.350.5727.12111.075240.1738.600.220.6626.67109.735340.3341.990.320.7127.00108.855440.5041.480.270.0325.54109.105540.6645.880.23-0.1026.07112.975640.8350.500.380.8826.09113.265741.3251.300.280.7323.93113.165841.1545.460.380.7323.93113.167141.6356.540.380.7323.93113.167241.8159.460.380.7323.93113.167341.8951.020.3125.39112.927441.4556.540.380.7323.93113.167442.6356.540.380.7726.05116.23 <tr< td=""><td>51</td><td>38.37</td><td>40.95</td><td>0.66</td><td>0.45</td><td>36.29</td><td>115.35</td><td></td></tr<>	51	38.37	40.95	0.66	0.45	36.29	115.35	
H438.8648.320.540.5130.71114.415530.0244.630.570.8531.00115.526639.1946.470.600.1130.94114.627739.543.420.600.1124.25112.3788.639.5150.900.360.1124.25112.318939.6855.800.380.1124.76112.316140.1146.590.350.5727.12111.075240.6145.970.320.6626.67109.735340.6341.880.270.0325.54106.35440.5041.480.270.0325.54110.635540.6645.880.23-0.1026.70112.975640.6350.800.380.1926.71113.645740.9945.140.320.1026.70113.645841.1594.640.380.1926.71114.325941.2551.300.62-0.1625.88113.647041.4852.840.381.4826.34115.797142.6365.540.280.7725.20116.017241.8159.460.380.5726.09110.417342.9055.240.380.5726.09119.417442.4551.910.310.3226.92<	52	38.53	38.30	0.82	0.51	36.90	115.77	
5539.0244.630.570.8531.00115.526639.1946.470.600.1130.94114.627739.3543.420.36-0.2228.01113.658335.150.900.360.1124.25112.278939.6855.830.350.5024.02112.4516140.0146.590.350.5727.12111.071736.600.220.6626.67109.7318140.3141.290.230.7127.00108.8518440.5041.480.270.0325.54106.1018540.6645.880.23-0.1625.86113.2718641.1540.43-0.1026.70112.9718740.9945.140.43-0.1026.70113.6418641.8555.940.62-0.1625.86113.6418741.8555.400.8814.8420.92113.6418841.1559.400.880.7323.93113.1619941.2251.300.62-0.1625.84113.6419941.2551.300.62-0.1625.84113.6419941.2651.300.62-0.1625.84113.6419941.2651.300.62-0.1625.84113.6419941.2651.300.62-0.1625.94<	53	38.69	40.65	0.38	0.20	34.05	115.43	
6693.1946.470.600.1120.94114.627739.3543.420.36-0.2228.01113.658839.5150.900.360.1124.25112.478039.8445.970.380.1124.25112.318140.0145.970.380.1124.76112.318140.0145.970.320.7127.00108.858241.0738.600.220.6626.67109.738340.3341.290.230.7127.00108.858440.5041.480.270.0325.54106.38540.6645.880.23-0.1825.70113.978641.1549.460.380.1928.47114.328740.9941.3251.300.62-0.1625.88113.648841.1549.460.380.4620.8211.618941.3251.300.62-0.1625.84115.798141.4850.400.381.4826.34115.798241.8150.400.390.7123.64119.248341.9851.021.010.4832.84119.248442.4055.540.390.7726.60119.618542.3055.200.710.3325.39115.038641.1955.400.360.70<	54	38.86	48.32	0.54	0.51	30.71	114.41	
5799.3543.420.36-0.2228.01113.655895.5150.900.360.1124.25112.275996.8855.830.350.5024.02112.455039.4445.970.380.1124.76112.315140.0146.590.350.5727.12111.075240.1738.600.220.6626.67109.735340.6341.880.270.0325.54109.105540.6645.880.23-0.1825.26110.635640.8350.500.380.8826.09111.925740.6645.880.23-0.1625.88113.645841.1594.640.380.1928.47114.325941.3251.300.62-0.1625.88113.647041.8852.980.7323.93113.167141.6555.400.280.7323.93113.167241.8159.400.381.4826.34115.797341.9851.021.010.4832.84119.247441.6555.400.890.0726.60119.047542.3055.200.710.3325.39117.937442.7473.600.880.5726.60116.237542.3055.400.600.7026.00114	55	39.02	44.63	0.57	0.85	31.00	115.52	
8899.5150.900.360.1124.25112.279939.6855.830.350.5024.02112.456039.8445.700.380.1124.76112.316140.1046.590.350.5727.12111.076240.1738.600.220.6626.67109.736340.3341.290.230.7127.00108.856440.5041.480.270.0325.64106.36540.6350.500.380.1826.09111.926640.8350.500.380.1926.70112.976740.9945.140.43-0.1025.70112.976841.5594.660.380.1928.47114.327041.8452.980.280.35113.647141.6556.540.280.7325.94115.647241.8452.980.280.1310.927341.9851.021.010.4823.44115.747442.1452.191.31-0.4235.29115.037442.455.910.31-0.7225.60119.047442.465.910.31-0.1225.37115.037542.305.540.460.7026.05116.237642.4773.600.840.5726.00114.92 <td< td=""><td>56</td><td>39.19</td><td>46.47</td><td>0.60</td><td>0.11</td><td>30.94</td><td>114.62</td><td></td></td<>	56	39.19	46.47	0.60	0.11	30.94	114.62	
9999.6855.830.350.5024.02112.450039.8445.970.380.1124.76112.311140.0146.990.350.5727.12111.0712240.1738.600.220.6626.67109.7313340.3341.290.230.7127.00108.8514440.5041.480.270.0325.54109.1015540.6645.880.23-0.1825.26110.6316645.880.23-0.1026.70112.9717449.9945.140.43-0.1026.70112.9718841.1549.460.380.1928.47114.3217441.4859.480.280.7323.93113.1617441.4859.480.280.7323.93113.1617441.4859.460.381.4826.34115.7917441.4859.460.381.4826.34115.7917542.3059.191.31-0.4235.29120.5017542.3059.191.31-0.4235.29120.5017542.3059.191.31-0.4235.29120.5017642.4773.600.880.5726.60119.9417642.4773.600.880.5726.05116.2317655.400.490.3025.37 <td< td=""><td>57</td><td>39.35</td><td>43.42</td><td>0.36</td><td>-0.22</td><td>28.01</td><td>113.65</td><td></td></td<>	57	39.35	43.42	0.36	-0.22	28.01	113.65	
5039.8445.970.380.1124.76112.315140.0146.590.350.5727.12111.075240.1738.000.220.6626.67109.735340.3341.290.230.7127.00108.855340.6645.880.23-0.1825.26110.635540.6645.880.23-0.1825.26110.635640.8350.500.380.8826.99111.925740.9945.140.43-0.1026.70114.325841.1549.460.380.1928.47114.325941.3251.300.62-0.1625.88113.647041.4852.980.280.7323.93115.167141.6556.540.280.7421.9211.817241.8159.460.380.7726.34115.797341.9851.021.010.4832.84115.247442.4452.990.7730.48120.507542.3057.300.550.2926.05116.237642.4773.600.550.2926.05116.237742.6365.200.491.1225.37115.037642.4773.600.550.2926.05116.237742.6353.190.43-0.1225.12114	58	39.51	50.90	0.36	0.11	24.25	112.27	
51       40.01       46.59       0.35       0.57       27.12       111.07         52       40.17       38.60       0.22       0.66       26.67       109.73         53       40.33       41.29       0.23       0.71       27.00       108.85         54       0.66       45.88       0.23       0.71       25.54       106.63         56       40.66       45.88       0.23       0.71       25.76       110.63         56       40.66       45.88       0.23       0.71       25.76       110.63         57       40.99       45.14       0.43       -0.10       25.70       112.97         58       41.15       94.46       0.38       0.19       28.47       113.64         60       41.48       52.98       0.28       0.73       23.93       113.16         71       41.65       56.54       0.28       0.46       20.82       111.61         72       41.81       59.46       0.38       1.48       25.34       115.79         73       41.98       51.02       1.01       0.48       32.44       119.24         74       42.63       60.52       0.71	59	39.68	55.83	0.35	0.50	24.02	112.45	
51       40.01       46.59       0.35       0.57       27.12       111.07         52       40.17       38.60       0.22       0.66       26.67       109.73         53       40.33       41.29       0.23       0.71       27.00       108.85         54       0.66       45.88       0.23       0.71       25.54       109.10         56       40.66       45.88       0.23       0.71       25.76       110.63         56       40.66       45.88       0.23       0.71       25.76       110.53         57       40.69       45.14       0.43       -0.10       25.76       111.92         57       40.99       45.14       0.43       0.19       28.47       113.22         58       41.15       94.66       0.38       0.19       23.93       113.16         70       41.65       56.54       0.28       0.46       20.82       111.61         71       41.65       56.54       0.28       0.46       20.82       111.61         72       41.81       59.46       0.38       0.57       26.60       119.04         74       42.63       60.52       0.71	60							
S240.1738.600.220.6626.67109.733340.3341.290.230.7127.00108.853440.5041.480.270.0325.54101.035540.6645.880.23-0.1825.26110.636640.8350.500.380.8826.09111.925740.9945.140.43-0.1026.70112.975841.1549.460.380.1928.47114.325941.3251.000.62-0.1625.88113.647041.4852.980.7323.93113.167141.6556.540.280.4620.82111.617241.8159.460.381.4826.34115.797341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.7726.60119.047642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9653.290.49-0.1225.42113.757443.2953.290.49-0.1225.42113.757443.7854.490.61-0.8125.91	61							
3340.3341.290.230.7127.00108.854440.5041.480.270.0325.54109.105540.6645.880.23-0.1825.26110.635640.8350.500.380.8826.09111.925740.9945.140.43-0.1026.70112.975841.1549.460.380.1928.47114.325941.3251.300.62-0.1625.88113.647041.4852.980.280.7323.93113.167141.6556.540.280.4620.62111.617241.8159.460.381.4825.49115.797341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.0730.48120.527642.4773.600.880.5726.60119.047742.6360.520.710.3325.39115.037842.8057.300.550.2926.05116.237942.9656.200.491.1225.37115.037443.7854.480.34-0.1830.26117.307443.2654.070.31-0.8125.91114.267443.7854.480.340.7925	62							
3440.5041.480.270.0325.54109.105540.6645.880.23-0.1825.26110.636640.8350.500.380.8826.09111.926740.9945.140.43-0.1026.70112.976841.1549.460.380.1928.47114.327041.4852.980.280.7323.93113.167141.6556.540.280.7323.93113.167241.8159.460.381.4826.34115.797341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.7730.48120.527642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9552.200.540.3025.37115.037843.1255.400.610.7026.01114.267943.1253.190.31-0.1225.42113.757343.2953.190.31-0.1225.4113.757443.7854.480.631.2427.99116.007443.7854.480.631.2427.9	63							
3540.6645.880.23-0.1825.26110.636640.8350.500.380.8826.09111.927740.9945.140.43-0.1026.70112.977841.1594.640.380.1928.47114.329041.3251.300.62-0.1625.88113.647041.4852.980.280.7323.93113.167141.6556.540.280.4620.82111.617241.8159.460.381.4826.34115.797341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.0736.60119.047642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9655.200.491.1225.37115.037843.1255.410.610.7026.00114.927943.2953.220.540.6127.99116.007443.7854.480.631.2427.99116.007543.9450.290.790.1930.35117.377644.1153.280.67-0.1830.	64							
3640.8350.500.380.8826.09111.925740.9945.140.43-0.1026.70112.975841.1549.460.380.1928.47114.325941.3251.300.62-0.1625.88113.647041.4852.980.280.7323.93113.167141.6556.540.280.7323.93115.797241.8159.460.381.4826.34115.797341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.0730.48120.527642.4773.600.880.5726.60119.047742.6365.200.710.3325.39117.337842.8057.330.550.2926.05116.237942.6455.540.460.7026.01114.928043.1255.540.460.7026.01114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.91114.268443.7855.490.670.83117.308443.7855.990.610.7725.22114	65							
57       40.99       45.14       0.43       -0.10       26.70       112.97         58       41.15       49.46       0.38       0.19       28.47       114.32         59       41.32       51.30       0.62       -0.16       25.88       113.64         70       41.48       52.98       0.28       0.73       23.93       113.16         71       41.65       56.54       0.28       0.46       20.82       111.61         72       41.81       59.46       0.38       1.48       26.34       115.79         73       41.98       51.02       1.01       0.48       32.84       119.24         74       42.14       52.19       1.31       -0.42       35.29       120.50         75       42.30       59.34       0.89       0.07       30.48       120.52         76       42.47       73.60       0.88       0.57       26.60       119.04         77       42.63       6.52       0.71       0.33       25.39       117.93         78       42.86       53.20       0.49       1.12       25.37       115.03         80       43.29       53.22       0.54	66							
3841.1549.460.380.1928.47114.325941.3251.300.62-0.1625.88113.647041.4852.980.280.7323.93113.167141.6556.540.280.4620.82111.617241.8159.460.381.4826.34115.797341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.0730.48120.527642.477.3600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038143.2953.220.540.3026.18114.928243.455.190.43-0.1225.42113.758343.6254.070.31-0.1225.42115.038443.4355.290.790.1930.3517.378444.4450.340.34-0.7925.42113.608543.4450.340.34-0.7925.22114.528644.1153.280.67-0.1830.26117.308744.2754.330.36-0.1221	67							
3941.3251.300.62-0.1625.88113.647041.4852.980.280.7323.93113.167141.6556.540.280.4620.82111.617241.8159.460.381.4826.34115.797341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.0730.48120.527642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038143.2953.220.540.3026.18114.928143.2953.210.540.3026.18114.928143.6254.070.31-0.1225.91114.268343.6254.070.31-0.1225.91114.268443.7854.480.631.2427.99116.008443.7854.480.631.2427.99116.008443.7453.490.34-0.7925.22114.528543.6463.550.36-1.2131.3215.628644.4150.340.36-1.2121	68							
7041.4852.980.280.7323.93113.167141.6556.540.280.4620.82111.617241.8159.460.381.4826.34115.797341.9851.021.010.4832.84119.247442.1452.191.310.4235.29120.507542.3059.340.890.0730.48120.527642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038143.1255.240.460.7026.03114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.970.31-0.8125.91114.268443.7854.480.631.2427.99116.008443.7854.480.67-0.1830.26117.308444.4150.340.34-0.7925.22114.528544.4050.340.360.1221.93115.668444.4350.340.360.1221.93115.628444.4450.340.360.1221.9	69							
41.65       56.54       0.28       0.46       20.82       111.61         72       41.81       59.46       0.38       1.48       26.34       115.79         73       41.98       51.02       1.01       0.48       32.84       119.24         74       42.14       52.19       1.31       -0.42       35.29       120.50         75       42.30       59.34       0.89       0.07       30.48       120.52         76       42.47       73.60       0.88       0.57       26.60       119.04         77       42.63       60.52       0.71       0.33       25.39       117.93         78       42.80       57.03       0.55       0.29       26.05       116.23         79       42.63       56.20       0.49       1.12       25.37       115.03         81       43.29       53.22       0.54       0.30       26.18       114.58         82       43.45       53.19       0.43       -0.12       25.42       113.75         83       43.62       54.07       0.31       -0.81       30.26       117.30         84       43.78       54.48       0.63       1.24 </td <td>70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	70							
P241.8159.460.381.4826.34115.79P341.9851.021.010.4832.84119.24P442.1452.191.31-0.4235.29120.50P542.3059.340.890.0730.48120.52P642.4773.600.880.5726.60119.04P742.6360.520.710.3325.39117.93P842.8057.030.550.2926.05116.23P942.9656.200.491.1225.37115.03P643.1255.540.460.7026.00114.92P643.1255.540.460.7026.01114.92P643.1255.490.460.7026.18114.58P743.6353.190.43-0.1225.42113.75P843.7854.480.631.2427.99116.00P843.7854.480.631.2427.99116.00P841.4153.280.67-0.1830.26117.37P844.4254.430.34-0.7925.22114.52P844.4063.550.450.0021.77113.24P844.4063.550.630.1221.93115.06P844.6063.550.630.1921.93115.02P844.6063.550.630.1221.9	71							
7341.9851.021.010.4832.84119.247442.1452.191.31-0.4235.29120.507542.3059.340.890.0730.48120.527642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038043.1255.540.460.7026.00114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.91114.268443.7854.480.631.2427.99116.008543.9455.290.790.1930.35117.378644.1153.280.67-0.1830.26117.308744.2754.730.610.0728.50115.448844.4450.340.34-0.7925.22114.528944.6063.550.630.1921.77113.248044.6063.550.630.1921.71113.248144.9363.550.630.1921.72115.628245.6062.670.391.1824.	72							
P442.1452.191.31-0.4235.29120.507542.3059.340.890.0730.48120.527642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038043.1255.540.460.7026.00114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.9114.268443.7854.480.631.2427.99116.008543.9455.290.790.1930.35117.378644.1153.280.67-0.1830.26117.308744.2754.730.610.0725.2214.528844.4450.340.34-0.7925.2214.528944.6063.550.630.1921.93115.628044.6063.550.630.1921.93115.628144.9363.550.630.1923.58115.728245.6662.670.391.1824.5114.068345.6662.670.391.1824.51 </td <td>73</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	73							
7542.3059.340.890.0730.48120.527642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038043.1255.540.460.7026.00114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.91114.268443.7854.480.631.2427.99116.008543.9455.290.790.1930.35117.378644.1153.280.67-0.1830.26115.448744.2754.730.610.0725.2214.528844.4450.340.34-0.7925.2214.528944.6063.550.450.0021.7713.248044.7665.890.36-0.1221.9315.668144.9363.550.630.1923.5815.728245.6662.670.391.1824.5114.068345.6662.670.35-0.0725.76112.548445.6663.66-0.1230.00112.48	74							
7642.4773.600.880.5726.60119.047742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038043.1255.540.460.7026.00114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.91114.268443.7854.480.631.2427.99116.008543.9455.290.790.1930.35117.308644.1153.280.67-0.1830.26115.448744.6063.550.63-0.7925.22114.528844.4450.340.34-0.7925.22114.528944.6063.550.63-0.1221.93115.068044.6063.550.630.1921.77113.248144.7963.550.630.1921.91115.628245.0962.020.570.8023.58115.728345.2662.670.391.1824.51114.068445.4245.690.35-0.0725.76112.548545.5656.600.6025.76	75							
7742.6360.520.710.3325.39117.937842.8057.030.550.2926.05116.237942.9656.200.491.1225.37115.038043.1255.540.460.7026.00114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.91114.268443.7854.480.631.2427.99116.008543.9455.290.790.1930.35117.378644.1153.280.67-0.1830.26115.448744.6063.550.450.0021.77113.248844.4450.340.34-0.7925.22114.528944.6063.550.450.0021.77113.248044.7665.890.36-0.1221.93115.068144.9363.550.630.1922.91115.628245.0962.020.570.8023.58115.728345.2662.670.391.1824.51114.068445.4245.690.35-0.0725.76112.548445.4245.690.35-0.0725.76112.548545.5845.660.36-0.12								
8       42.80       57.03       0.55       0.29       26.05       116.23         9       42.96       56.20       0.49       1.12       25.37       115.03         80       43.12       55.54       0.46       0.70       26.00       114.92         81       43.29       53.22       0.54       0.30       26.18       114.58         82       43.45       53.19       0.43       -0.12       25.42       113.75         83       43.62       54.07       0.31       -0.81       25.91       114.26         84       43.78       54.48       0.63       1.24       27.99       116.00         85       43.94       55.29       0.79       0.19       30.35       117.37         86       44.11       53.28       0.67       -0.18       30.26       117.30         87       44.27       54.73       0.61       0.07       28.50       115.44         88       44.44       50.34       0.34       -0.79       25.22       114.52         89       44.60       63.55       0.45       0.00       21.77       113.24         90       44.76       65.89       0.36								
9942.9656.200.491.1225.37115.038043.1255.540.460.7026.00114.928143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.91114.268443.7854.480.631.2427.99116.008543.9455.290.790.1930.35117.378644.1153.280.67-0.1830.26117.308744.2754.730.610.0728.50115.448844.4450.340.34-0.7925.22114.528944.6063.550.450.0021.77113.248044.7665.890.36-0.1221.93115.068144.9363.550.630.1922.91115.628245.0962.020.570.8023.58115.728345.2662.670.391.1824.51114.068445.4245.690.35-0.0725.76112.548445.4245.660.36-0.1230.00112.48								
80         43.12         55.54         0.46         0.70         26.00         114.92           81         43.29         53.22         0.54         0.30         26.18         114.58           82         43.45         53.19         0.43         -0.12         25.42         113.75           83         43.62         54.07         0.31         -0.81         25.91         114.26           84         43.78         54.48         0.63         1.24         27.99         116.00           85         43.94         55.29         0.79         0.19         30.35         117.37           86         44.11         53.28         0.67         -0.18         30.26         117.30           87         44.27         54.73         0.61         0.07         28.50         115.44           88         44.44         50.34         0.34         -0.79         25.22         114.52           89         44.60         63.55         0.45         0.00         21.77         13.24           80         44.93         63.55         0.63         0.19         2.91         115.06           81         44.93         63.55         0.63         <								
8143.2953.220.540.3026.18114.588243.4553.190.43-0.1225.42113.758343.6254.070.31-0.8125.91114.268443.7854.480.631.2427.99116.008543.9455.290.790.1930.35117.378644.1153.280.67-0.1830.26117.308744.2754.730.610.0728.50115.448844.4450.340.34-0.7925.22114.528944.6063.550.450.0021.77113.248044.7665.890.36-0.1221.93115.068144.9363.550.630.1922.91115.628245.0962.020.570.8023.58115.728345.2662.670.391.1824.51114.068445.4245.690.35-0.0725.76112.548545.660.36-0.1230.00112.48								
3243.4553.190.43-0.1225.42113.753343.6254.070.31-0.8125.91114.263443.7854.480.631.2427.99116.003543.9455.290.790.1930.35117.373644.1153.280.67-0.1830.26117.303744.2754.730.610.0728.50115.443844.4450.340.34-0.7925.22114.523944.6063.550.450.0021.77113.243044.7665.890.36-0.1221.93115.063044.7665.890.360.1922.91115.623045.2662.670.391.1824.51114.063045.2662.670.391.1824.51114.063045.5845.660.36-0.1230.00112.48								
3343.6254.070.31-0.8125.91114.263443.7854.480.631.2427.99116.003543.9455.290.790.1930.35117.373644.1153.280.67-0.1830.26117.303744.2754.730.610.0728.50115.443844.4450.340.34-0.7925.22114.523944.6063.550.450.0021.77113.244044.7665.890.36-0.1221.93115.0644.9363.550.630.1922.91115.6245.0962.020.570.8023.58115.7245.2662.670.391.1824.51114.0645.4245.690.35-0.0725.76112.5445.5845.660.36-0.1230.00112.48								
3443.7854.480.631.2427.99116.003543.9455.290.790.1930.35117.373644.1153.280.67-0.1830.26117.303744.2754.730.610.0728.50115.443844.4450.340.34-0.7925.22114.523944.6063.550.450.0021.77113.243044.7665.890.36-0.1221.93115.063044.9363.550.630.1922.91115.623045.2662.020.570.8023.58115.723145.4245.690.35-0.0725.76112.543545.5845.660.36-0.1230.00112.48								
3543.9455.290.790.1930.35117.373644.1153.280.67-0.1830.26117.303744.2754.730.610.0728.50115.443844.4450.340.34-0.7925.22114.523944.6063.550.450.0021.77113.243944.7665.890.36-0.1221.93115.063044.9363.550.630.1922.91115.623045.0962.020.570.8023.58115.723045.2662.670.391.1824.51114.063045.4245.690.35-0.0725.76112.543045.5845.660.36-0.1230.00112.48								
3644.1153.280.67-0.1830.26117.303744.2754.730.610.0728.50115.443844.4450.340.34-0.7925.22114.523944.6063.550.450.0021.77113.244044.7665.890.36-0.1221.93115.0644.9363.550.630.1922.91115.6244.9363.550.630.1923.58115.7245.0962.020.570.8023.58115.7245.4245.690.35-0.0725.76112.5445.4245.690.36-0.1230.00112.48								
8744.2754.730.610.0728.50115.448844.4450.340.34-0.7925.22114.528944.6063.550.450.0021.77113.249044.7665.890.36-0.1221.93115.069144.9363.550.630.1922.91115.629245.0962.020.570.8023.58115.729345.2662.670.391.1824.51114.069445.4245.690.35-0.0725.76112.549545.5845.660.36-0.1230.00112.48	85							
8844.4450.340.34-0.7925.22114.528944.6063.550.450.0021.77113.249044.7665.890.36-0.1221.93115.069144.9363.550.630.1922.91115.629245.0962.020.570.8023.58115.729345.2662.670.391.1824.51114.069445.4245.690.35-0.0725.76112.549545.5845.660.36-0.1230.00112.48	86							
8944.6063.550.450.0021.77113.249044.7665.890.36-0.1221.93115.069144.9363.550.630.1922.91115.629245.0962.020.570.8023.58115.729345.2662.670.391.1824.51114.069445.4245.690.35-0.0725.76112.549545.5845.660.36-0.1230.00112.48	87							
9044.7665.890.36-0.1221.93115.069144.9363.550.630.1922.91115.629245.0962.020.570.8023.58115.729345.2662.670.391.1824.51114.069445.4245.690.35-0.0725.76112.549545.5845.660.36-0.1230.00112.48	88							
9144.9363.550.630.1922.91115.629245.0962.020.570.8023.58115.729345.2662.670.391.1824.51114.069445.4245.690.35-0.0725.76112.549545.5845.660.36-0.1230.00112.48	89							
9245.0962.020.570.8023.58115.729345.2662.670.391.1824.51114.069445.4245.690.35-0.0725.76112.549545.5845.660.36-0.1230.00112.48	90							
9345.2662.670.391.1824.51114.069445.4245.690.35-0.0725.76112.549545.5845.660.36-0.1230.00112.48	91							
94       45.42       45.69       0.35       -0.07       25.76       112.54         95       45.58       45.66       0.36       -0.12       30.00       112.48	92							
95 45.58 45.66 0.36 -0.12 30.00 112.48	93							
	94							
96         45.75         44.12         0.43         0.90         30.08         113.42	95							
	96	45.75	44.12	0.43	0.90	30.08	113.42	

Field inp	ut data :: (	continued	)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
97	45.91	50.81	0.49	-0.63	30.28	114.86	
98	46.08	53.73	0.61	-0.02	28.01	115.66	
99	46.24	59.82	0.55	1.72	28.09	116.23	
100	46.40	54.69	0.61	-0.60	25.74	115.55	
101	46.57	60.99	0.43	0.01	23.44	114.89	
102	46.73	68.19	0.39	0.26	24.20	117.44	
103	46.90	71.35	1.15	0.27	25.65	119.31	
104	47.06	69.23	0.97	-0.01	28.09	120.62	
105	47.22	65.93	0.89	0.69	27.11	120.22	
106	47.39	73.55	0.98	0.31	24.59	118.66	
107	47.55	70.35	0.42	0.22	21.82	116.65	
108	47.72	66.61	0.34	-0.56	22.99	118.05	
109	47.88	78.50	1.33	-0.91	24.16	119.68	
110	48.04	78.57	0.91	-0.89	24.35	121.73	
111	48.21	88.18	1.07	-0.64	22.60	120.39	
112	48.37	76.86	0.78	0.98	20.99	119.42	
113	48.54	81.11	0.56	0.01	20.17	117.55	
114	48.70	75.12	0.56	-0.82	21.00	117.38	
115	48.86	68.69	0.76	-0.78	22.22	116.15	
116	49.03	60.73	0.32	-0.93	22.83	114.86	
117	49.19	60.54	0.33	0.56	20.86	111.68	
118	49.36	58.15	0.28	-0.20	21.82	112.26	
119	49.52	58.71	0.40	1.29	24.53	113.41	
120	49.69	52.74	0.52	0.09	27.54	113.62	
121	49.85	44.52	0.35	-0.52	31.15	113.66	
122	50.01	43.79	0.35	0.02	33.91	112.89	
123	50.18	38.83	0.43	-0.95	36.37	113.17	
124	50.34	38.45	0.42	-1.28	37.77	112.76	
125	50.51	37.94	0.40	-1.16	37.10	112.13	
125	50.67	37.84	0.33	-0.52	37.31	112.15	
120	50.83	32.95	0.33	-1.01	39.24	109.84	
127	51.00	28.68	0.27	-1.01	40.66	109.28	
129 130	51.16	32.74	0.28 0.28	-1.21	41.52 42.48	109.33 110.68	
	51.33	31.39		-0.95	42.48		
131 132	51.49 51.65	31.68 31.06	0.44 0.33	-0.38 -1.09	43.91 41.69	110.99 110.57	
132	51.65	31.06	0.33	-1.09	38.22	108.41	
133					38.22 34.98	108.41	
	51.98	31.68	0.19	-1.28			
135	52.15	31.94	0.15	-1.24	37.02	107.19	
136	52.31	32.35	0.28	-1.36	39.55	109.56	
137	52.47	34.26	0.42	-1.45	42.38	112.11	
138	52.64	35.59	0.49	-1.36	43.54	114.95	
139	52.80	42.41	0.79	-0.92	43.35	116.88	
140	52.97	44.72	0.87	-1.23	38.00	117.29	
141	53.13	53.78	0.51	-1.37	30.21	117.00	
142 143	53.29	71.10	0.58	-1.12	28.03	117.37	
	53.46	58.65	0.92	-1.19	26.92	118.78	

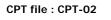
: Field inp	ut data :: (	continued	I)				
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
145	53.79	68.19	0.52	0.35	22.89	117.18	
146	53.95	73.19	0.48	-1.62	21.65	115.03	
147	54.11	62.27	0.41	-1.31	22.84	113.48	
148	54.28	48.39	0.29	-1.09	26.16	112.25	
149	54.44	46.95	0.35	-0.83	29.82	111.81	
150	54.61	43.88	0.39	-0.76	33.22	113.32	
151	54.77	44.21	0.54	-1.38	34.85	113.82	
152	54.93	44.24	0.45	-0.63	34.60	113.48	
153	55.10	42.99	0.33	-1.25	32.81	111.91	
154	55.26	42.13	0.29	-1.59	35.53	114.52	
155	55.43	49.16	0.89	-1.43	38.73	117.72	
156	55.59	51.80	1.11	-1.45	36.16	120.30	
157	55.75	70.29	1.07	-0.89	33.44	120.38	
158	55.92	61.92	0.85	0.04	30.81	120.49	
159	56.08	66.04	1.08	-0.03	29.22	118.94	
160	56.25	64.90	0.52	-0.53	28.10	119.13	
161	56.41	70.03	0.88	-0.64	24.39	117.30	
162	56.57	72.13	0.51	-0.80	24.85	117.76	
163	56.74	66.33	0.64	-1.26	25.17	117.69	
164	56.90	67.54	0.87	-1.05	25.62	117.49	
165	57.07	67.69	0.47	-0.92	25.30	117.27	
166	57.23	66.51	0.58	-1.51	24.37	116.68	
167	57.40	68.42	0.72	-0.57	24.73	116.66	
168	57.56	65.29	0.47	-1.28	25.15	116.34	
169	57.72	61.41	0.52	-0.99	24.84	115.25	
170	57.89	61.63	0.50	-0.70	25.15	114.54	
171	58.05	58.31	0.35	-1.59	25.76	113.68	
172	58.22	52.12	0.39	-0.68	29.36	113.40	
173	58.38	42.79	0.50	-0.85	36.29	113.96	
174	58.54	36.11	0.52	-1.26	41.85	113.73	
175	58.71	35.53	0.41	-1.37	46.62	113.06	
176	58.87	29.32	0.43	-1.71	52.07	112.41	
177	59.04	23.83	0.46	-1.19	60.26	112.42	
178	59.20	22.80	0.48	-1.52	65.72	111.41	
179	59.36	19.48	0.31	-1.45	68.33	109.65	
180	59.53	16.90	0.23	-1.48	70.13	107.72	
181	59.69	17.25	0.27	-1.64	71.64	107.36	
182	59.86	17.57	0.28	-1.65	72.89	107.71	
183	60.02	16.55	0.27	-1.57	72.96	107.41	
184	60.18	16.72	0.24	-1.70	74.47	106.93	
185	60.35	15.62	0.24	-1.54	75.77	106.77	
186	60.51	15.38	0.26	-1.62	79.29	106.31	
187	60.68	13.63	0.21	-1.66	82.84	106.29	
188	60.84	13.45	0.25	-1.58	84.49	105.89	
189	61.00	13.94	0.23	-1.63	82.57	106.73	
190	61.17	15.96	0.28	-1.63	80.46	108.17	
191	61.33	17.05	0.39	-1.52	75.42	109.05	
192	61.50	19.25	0.31	-1.39	63.55	109.50	

: Field inp	ut data :: (	(continued	)				
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
193	61.66	28.54	0.27	-1.47	49.47	109.88	
194	61.82	38.01	0.35	-1.48	41.22	111.54	
195	61.99	41.58	0.46	-1.51	39.09	113.65	
196	62.15	43.72	0.57	1.11	40.03	114.54	
197	62.32	39.99	0.52	-1.10	39.09	114.65	
198	62.48	44.97	0.47	-1.39	37.37	113.71	
199	62.64	43.97	0.38	-0.55	35.56	113.46	
200	62.81	44.46	0.46	-0.68	33.59	112.40	
201	62.97	46.00	0.29	-0.26	36.47	114.01	
202	63.14	43.14	0.66	-0.71	36.28	114.30	
203	63.30	46.80	0.51	-0.49	39.99	115.41	
204	63.46	40.86	0.55	-1.17	40.23	115.54	
205	63.63	43.24	0.69	-0.13	43.14	116.54	
206	63.79	44.42	0.78	-0.40	43.70	117.25	
207	63.96	43.42	0.74	-0.82	43.09	117.82	
208	64.12	48.44	0.84	-1.40	41.24	117.28	
209	64.28	46.60	0.60	-0.17	39.20	116.70	
210	64.45	46.32	0.56	-0.29	39.90	115.57	
211	64.61	39.82	0.59	-1.09	42.66	114.88	
212	64.78	35.47	0.49	-1.43	50.85	116.50	
213	64.94	35.58	1.03	-0.56	53.73	120.39	
214	65.10	54.17	1.93	-0.70	54.98	127.74	
215	65.27	85.95	5.45	-0.55	49.56	133.35	
216	65.43	127.06	8.35	3.75	40.80	136.81	
217	65.60	188.65	8.25	5.42	31.25	137.28	
218	65.76	244.91	6.59	53.84	20.70	137.28	
219	65.93	347.80	4.59	48.39	13.19	137.00	
220	66.09	465.91	5.20	9.97	8.40	136.86	
221	66.25	566.03	4.91	9.56	6.89	137.28	
222	66.42	616.24	6.46	5.85	6.10	137.28	
223	66.58	661.06	6.76	11.76	6.21	137.28	
224	66.75	708.99	8.12	5.86	6.26	137.28	
225	66.91	654.96	7.40	4.97	6.59	137.28	
226	67.07	578.23	6.14	1.37	7.08	137.28	
227	67.24	548.36	6.22	3.81	7.76	137.28	
228	67.40	503.60	6.04	3.24	8.29	137.28	
229	67.57	491.34	5.59	1.55	8.20	137.28	
230	67.73	513.78	5.16	1.40	7.98	137.28	
231	67.89	469.63	4.70	1.73	8.01	136.90	
232	68.06	449.76	4.74	0.43	8.61	136.21	
233	68.22	407.44	4.20	0.94	10.27	135.76	
234	68.39	313.78	4.44	0.38	13.70	135.66	
235	68.55	247.96	5.40	0.17	18.73	136.08	
236	68.71	229.16	6.08	9.51	22.39	136.00	
237	68.88	205.09	5.06	3.31	22.74	135.84	
238	69.04	233.70	5.16	6.55	18.11	135.69	
239	69.21	356.94	4.85	12.96	13.02	135.77	
240	69.37	422.64	4.03	5.37	9.18	135.75	

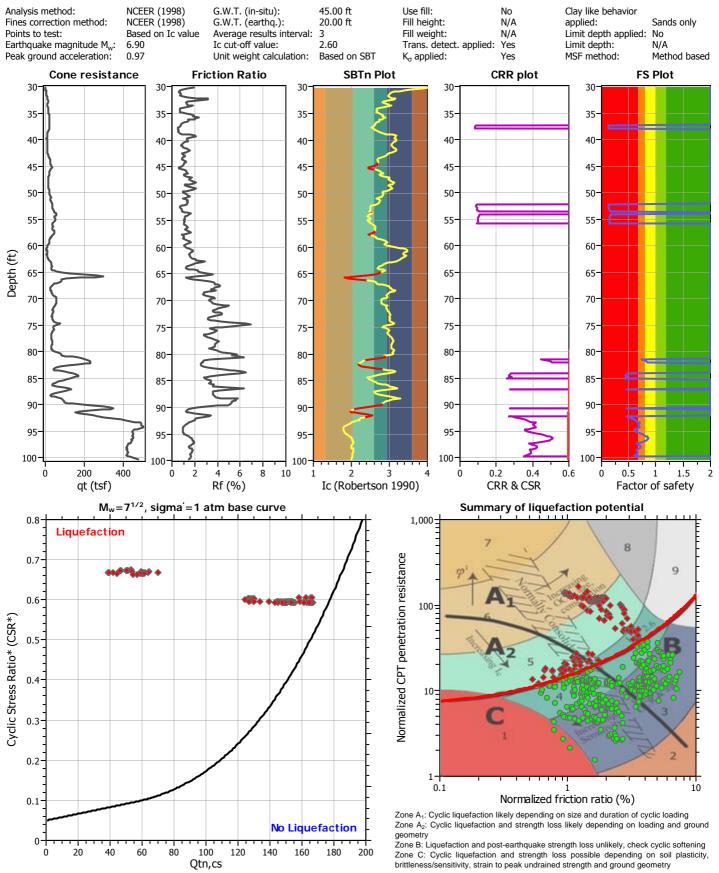
:: Field inp	ut data :: (	(continue	d)			
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)
241	69.53	476.36	4.16	2.94	8.24	136.71
242	69.70	509.44	6.13	2.29	8.06	137.28
243	69.86	561.20	6.56	4.90	8.12	137.28
244	70.03	586.42	6.81	5.00	7.65	137.28
245	70.19	572.12	6.14	6.88	7.49	137.28
246	70.35	528.85	5.34	4.65	7.96	137.28
247	70.52	470.05	5.52	6.84	10.01	137.28
248	70.68	361.27	6.24	6.61	13.59	137.28
249	70.85	283.50	6.22	4.45	19.67	136.61
250	71.01	148.91	4.63	0.78	28.10	134.30
251	71.17	81.82	3.55	5.25	33.03	133.67
252	71.34	196.24	5.89	16.02	30.07	134.68
253	71.50	215.86	5.93	15.02	26.62	136.09
254	71.67	186.69	5.67	1.45	30.00	135.26
255	71.83	109.96	4.84	10.86	33.84	133.47
256	71.99	117.11	3.32	11.48	40.82	130.55
257	72.16	65.31	2.25	2.98	44.42	126.86
258	72.32	38.67	1.33	7.08	57.52	123.04
259	72.49	33.95	1.21	8.37	69.79	122.51
260	72.65	34.79	2.30	8.32	80.86	125.83
261	72.81	36.67	4.16	9.73	58.80	129.19
262	72.98	111.38	3.64	20.16	28.45	133.78
263	73.14	349.98	5.76	16.42	14.10	136.53
264	73.31	559.87	6.15	11.40	N/A	137.28
265	73.47	554.16	-260034.6 7	5.69	N/A	137.28
266	73.64	711.57	-260034.6 7	6.46	N/A	137.28
267	73.80	694.37	7 -260034.6 7	4.11	N/A	137.28

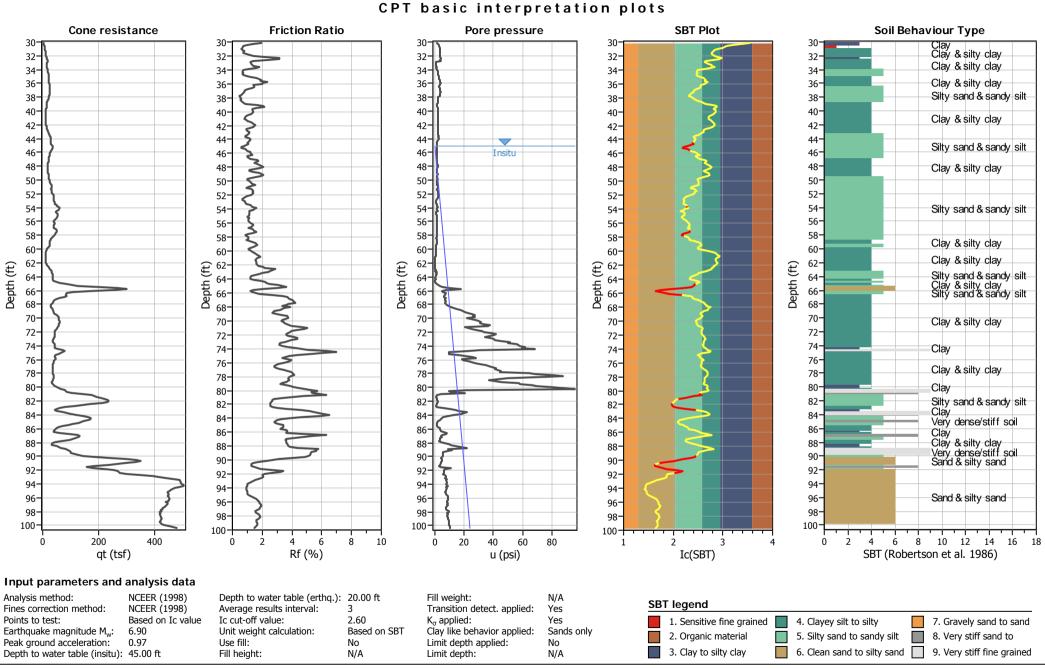
# Abbreviations

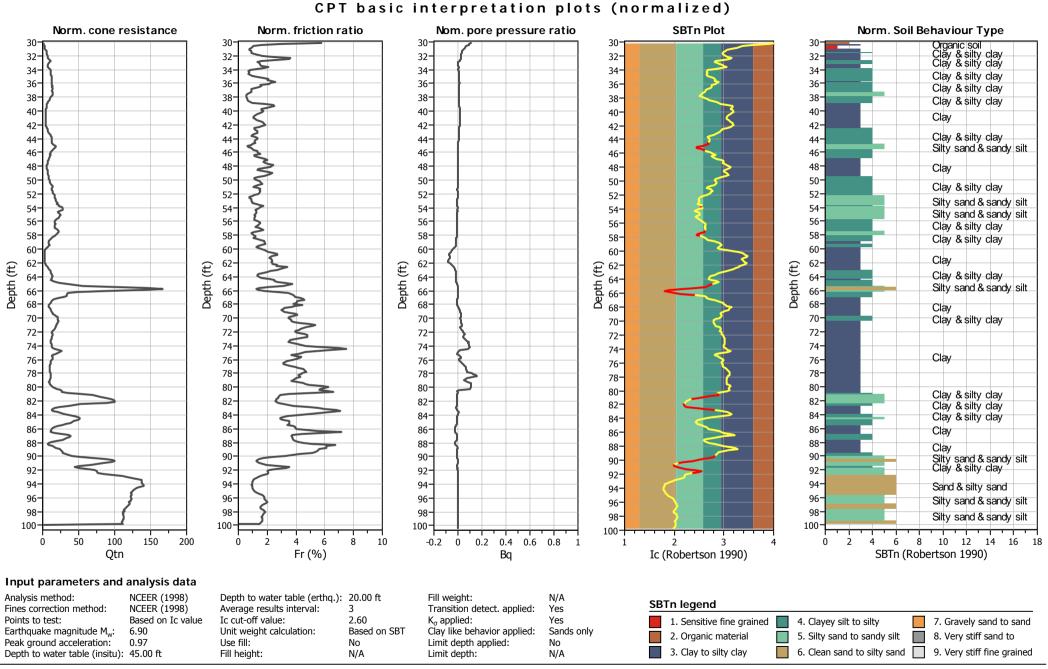




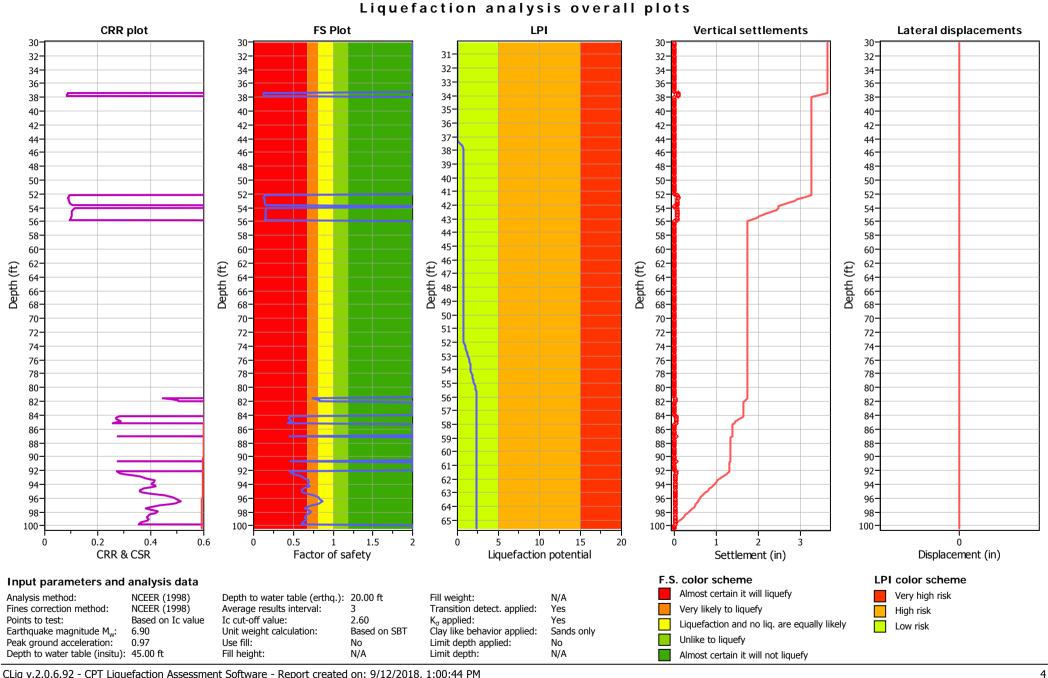

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

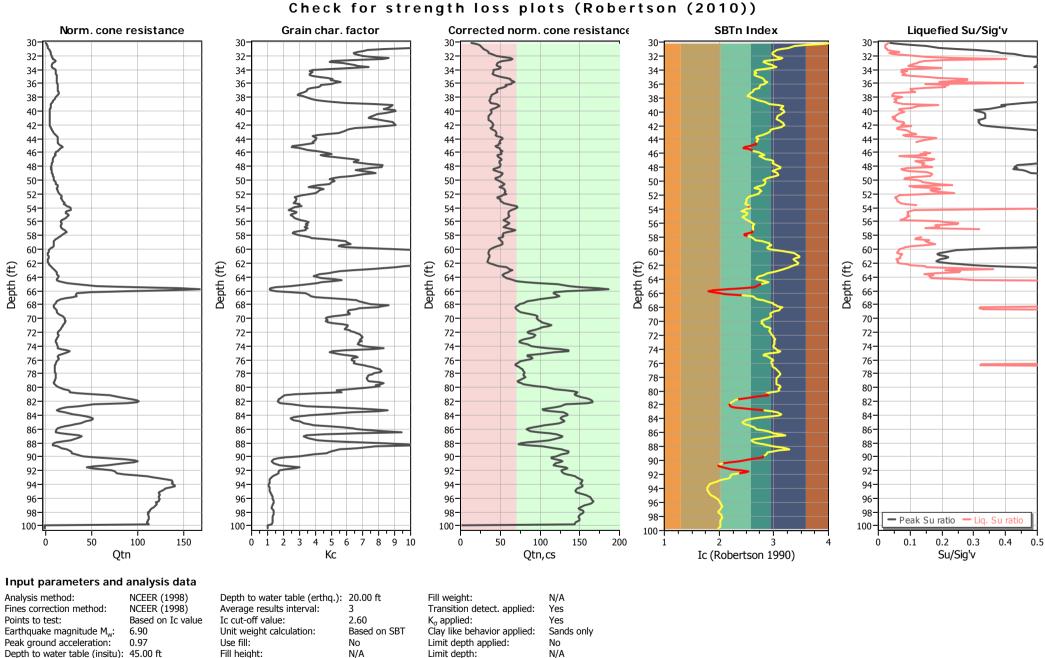

LIQUEFACTION ANALYSIS REPORT


# Project title : 21545 - TF Boadway LP


## Location : 942 N. Broadway, Los Angeles, CA




#### Input parameters and analysis data



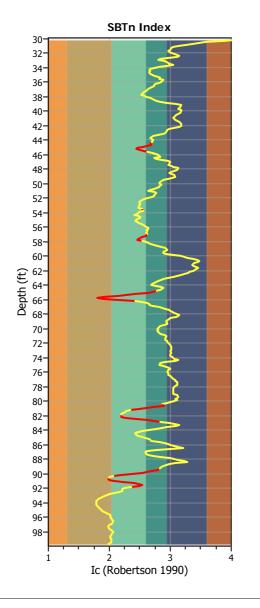


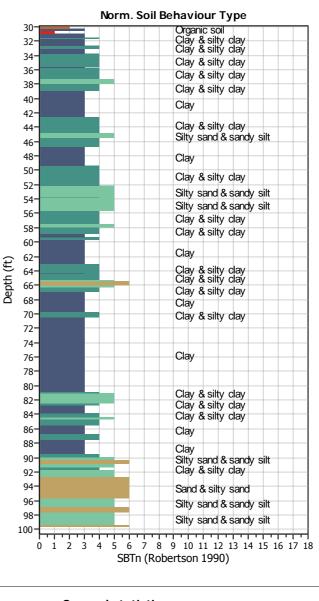



3






CPT name: CPT-02


# TRANSITION LAYER DETECTION ALGORITHM REPORT Summary Details & Plots

### Short description

The software will delete data when the cone is in transition from either clay to sand or vise-versa. To do this the software requires a range of  $I_c$  values over which the transition will be defined (typically somewhere between 1.80 <  $I_c$  < 3.0) and a rate of change of  $I_c$ . Transitions typically occur when the rate of change of  $I_c$  is fast (i.e. delta  $I_c$  is small).

The SBT_n plot below, displays in red the detected transition layers based on the parameters listed below the graphs.





Transition layer algorithm prope	rties	General statistics	
I _c minimum check value:	1.70	Total points in CPT file:	429
I _c maximum check value:	3.00	Total points excluded:	54
I _c change ratio value:	0.0250	Exclusion percentage:	12.59%
Minimum number of points in layer:	2	Number of layers detected:	12

:: Field inp	ut data ::					
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)
1	30.16	1.75	0.04	1.06	100.00	88.44
2	30.33	2.53	0.04	1.59	100.00	88.39
3	30.49	3.38	0.03	2.53	100.00	88.37
4	30.66	4.18	0.03	2.66	88.19	88.12
5	30.82	4.95	0.03	2.97	78.17	89.31
6	30.98	5.75	0.04	3.10	68.46	90.47
7	31.15	7.32	0.04	3.29	61.94	92.69
8	31.31	8.64	0.06	2.94	60.16	95.20
9	31.48	8.40	0.09	3.21	58.20	95.72
10	31.64	8.82	0.05	3.33	56.62	95.82
11	31.80	9.67	0.06	3.32	56.86	98.49
12	31.97	10.86	0.17	3.46	60.08	102.14
13	32.13	10.98	0.22	3.29	63.56	105.88
14	32.30	12.47	0.34	3.57	69.31	109.25
15	32.46	12.37	0.58	3.53	67.11	109.99
16	32.62	13.76	0.31	3.49	57.37	109.59
17	32.79	19.66	0.21	3.58	47.81	106.57
18	32.95	16.00	0.19	0.22	46.64	105.00
19	33.12	12.19	0.19	0.41	52.27	103.80
20	33.28	12.15	0.15	0.50	56.68	103.00
20	33.44	11.17	0.13	0.30	57.84	102.75
21	33.61	12.07	0.14	0.79	61.98	105.20
22	33.01	12.07	0.21	0.79	55.76	105.45
23	33.94	12.27	0.30	0.72	47.41	105.45
24	34.10	18.44	0.14	0.82	39.23	104.58
25	34.10 34.27	18.44	0.11	2.01	39.23	102.35
20	34.27	17.51	0.14	1.89	37.93	101.81
	34.43					
28		17.36	0.13	1.73	37.87	101.83
29	34.76	19.66	0.12	1.71	38.00	103.07
30	34.92	19.97	0.17	2.68	39.26	105.01
31	35.09	19.83	0.25	2.61	42.69	107.12
32	35.25	19.73	0.30	2.60	46.02	109.60
33	35.41	21.72	0.45	2.82	47.96	110.98
34	35.58	21.07	0.45	3.39	47.25	111.10
35	35.74	21.25	0.31	3.06	51.20	112.64
36	35.91	20.94	0.74	3.58	49.02	111.54
37	36.07	21.02	0.24	3.49	47.45	111.95
38	36.23	24.86	0.36	3.10	43.01	109.33
39	36.40	20.28	0.34	2.81	42.78	110.26
40	36.56	24.30	0.35	2.57	42.09	109.32
41	36.73	23.43	0.24	3.26	38.86	107.90
42	36.89	21.94	0.17	3.14	36.91	106.00
43	37.05	22.80	0.18	3.32	36.44	105.47
44	37.22	23.10	0.20	3.54	35.49	105.98
45	37.38	25.29	0.20	3.43	33.76	105.23
46	37.55	24.47	0.12	3.31	32.20	104.02
47	37.71	23.39	0.12	3.30	31.54	102.02
48	37.87	21.96	0.10	3.10	34.34	102.04

iela inp	ut data :: (	continued	)				
oint ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
49	38.04	19.16	0.13	2.06	36.08	101.20	
50	38.20	18.79	0.09	1.84	38.77	101.02	
51	38.37	17.59	0.10	1.94	40.50	100.12	
52	38.53	15.35	0.10	1.88	44.31	99.88	
53	38.69	13.95	0.09	1.89	48.59	99.91	
54	38.86	13.41	0.11	1.78	53.80	100.62	
55	39.02	12.03	0.14	1.45	63.98	104.52	
56	39.19	11.76	0.34	1.41	70.98	105.69	
57	39.35	10.71	0.23	1.44	70.41	106.27	
58	39.51	13.26	0.19	1.90	69.06	103.59	
59	39.68	9.14	0.12	1.72	67.65	101.83	
60	39.84	9.55	0.12	1.52	71.64	100.67	
61	40.01	10.07	0.14	1.52	72.00	101.27	
62	40.17	9.66	0.15	1.50	70.14	101.55	
63	40.33	10.86	0.13	1.50	68.21	101.26	
64	40.50	10.87	0.12	1.64	65.51	100.33	
65	40.66	10.27	0.10	1.58	63.61	99.20	
66	40.83	10.87	0.08	1.62	62.52	98.72	
67	40.99	11.12	0.10	1.57	62.03	98.46	
68	41.15	10.40	0.09	1.52	64.65	99.17	
69	41.32	10.13	0.11	1.47	66.64	99.35	
70	41.48	10.27	0.11	1.67	68.69	100.67	
71	41.65	10.73	0.15	1.66	70.74	101.60	
72	41.81	10.12	0.16	1.74	71.27	102.13	
73	41.98	10.66	0.14	1.67	71.91	102.95	
74	42.14	11.41	0.20	1.75	68.45	102.62	
75	42.30	11.76	0.13	1.71	63.53	102.52	
76	42.47	13.75	0.12	1.67	57.24	101.29	
77	42.63	14.60	0.12	1.80	55.03	102.23	
78	42.80	15.14	0.12	1.74	53.94	103.56	
79	42.80	16.94	0.17	1.74	53.09	103.50	
80	42.90	18.05	0.19	2.11	50.71	104.99	
81	43.12	19.89	0.21	2.11	45.84	105.96	
82	43.45	22.84	0.24	2.13	45.64	105.69	
83	43.45	22.04	0.18	2.33	39.38	105.69	
83 84	43.62	24.00 25.71	0.17	2.33	39.38 40.01	106.51	
84 85	43.78	28.65	0.29	2.05	40.01	108.83	
85 86	43.94	28.65	0.37	2.44	41.26	110.27	
					40.83	110.38	
87 88	44.27 44.44	27.16	0.30 0.25	1.88 0.83	40.55 39.07	109.38	
88 89	44.44 44.60	26.08 27.77	0.25	0.83	39.07	108.82	
89 90	44.60	27.77	0.27	1.21	39.74	109.26	
90 91	44.76		0.35	1.21	30.88	108.88	
		30.26					
92	45.09	36.93	0.27	1.08	28.80	107.47	
93 04	45.26	35.68	0.19	1.18	28.24	108.02	
94 95	45.42	34.34	0.21	1.13	32.93	109.38	
45	45.58	28.24	0.43	1.31	36.70	109.68	

Point ID	Depth						
	(ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
97	45.91	27.29	0.31	1.22	43.59	109.42	
98	46.08	20.95	0.35	1.02	45.77	109.55	
99	46.24	24.37	0.28	0.96	47.76	109.53	
100	46.40	24.28	0.32	1.15	42.73	107.81	
101	46.57	24.04	0.14	0.91	44.52	107.37	
102	46.73	20.41	0.25	1.06	48.93	107.77	
103	46.90	19.14	0.38	1.01	55.99	109.43	
104	47.06	19.61	0.36	0.85	58.34	109.31	
105	47.22	17.45	0.25	0.95	57.77	108.39	
106	47.39	17.80	0.27	1.41	56.56	107.98	
107	47.55	20.16	0.31	1.03	59.56	108.30	
108	47.72	14.94	0.30	0.84	62.42	108.43	
109	47.88	15.30	0.30	1.52	67.43	108.70	
110	48.04	16.34	0.37	1.57	66.74	107.86	
111	48.21	14.02	0.20	1.34	63.03	106.63	
112	48.37	16.30	0.16	1.33	59.77	104.22	
113	48.54	15.20	0.17	1.45	57.37	104.50	
114	48.70	16.79	0.21	1.43	59.99	106.57	
115	48.86	17.53	0.33	1.42	62.77	108.34	
116	49.03	16.03	0.36	1.21	64.58	109.58	
117	49.19	17.66	0.37	1.56	60.54	110.02	
118	49.36	22.61	0.36	1.12	55.90	109.32	
119	49.52	19.86	0.24	1.03	50.96	107.92	
120	49.69	20.23	0.19	1.35	48.36	105.99	
120	49.85	21.43	0.19	1.65	47.02	106.45	
121	50.01	22.77	0.10	1.26	48.32	100.45	
122	50.18	21.51	0.27	1.24	48.90	107.00	
124	50.34	24.00	0.31	1.10	47.48	110.20	
125	50.51	28.59	0.41	1.11	47.02	111.82	
126	50.67	27.48	0.52	0.97	42.04	111.50	
127	50.83	32.15	0.22	1.59	39.22	110.47	
128	51.00	30.76	0.25	2.11	37.59	109.62	
129	51.16	28.14	0.41	2.13	42.34	111.13	
130	51.33	27.66	0.44	1.01	44.36	111.86	
131	51.49	29.58	0.37	1.03	42.66	111.76	
132	51.65	31.19	0.38	1.67	42.11	112.45	
133	51.82	31.50	0.54	1.57	40.45	112.37	
134	51.98	32.95	0.34	1.50	37.68	113.11	
135	52.15	41.09	0.47	2.47	34.25	111.76	
136	52.31	34.90	0.30	1.93	32.21	111.06	
137	52.47	35.98	0.23	1.83	30.35	109.09	
138	52.64	38.50	0.24	1.94	30.55	108.98	
139	52.80	33.91	0.29	1.25	31.06	110.66	
140	52.97	41.74	0.41	0.36	30.58	111.20	
141	53.13	42.76	0.30	0.59	30.19	112.22	
142	53.29	40.48	0.42	0.64	29.73	112.61	
143	53.46	45.57	0.46	0.83	32.67	114.41	
144	53.62	42.10	0.63	1.03	32.32	116.32	

. Field inp	ut data :: (	continued	)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
145	53.79	53.25	0.81	1.08	33.66	118.18	
146	53.95	52.91	0.97	1.48	30.10	118.66	
147	54.11	61.04	0.69	1.08	28.74	118.46	
148	54.28	58.48	0.72	0.89	26.75	116.73	
149	54.44	49.66	0.48	1.72	29.76	115.85	
150	54.61	40.82	0.55	0.76	31.18	115.16	
151	54.77	48.45	0.60	0.67	30.69	115.35	
152	54.93	52.91	0.51	0.54	28.59	115.57	
153	55.10	51.26	0.56	0.89	27.62	115.40	
154	55.26	51.89	0.55	1.29	29.08	115.68	
155	55.43	48.34	0.59	1.38	29.85	114.71	
156	55.59	41.87	0.38	1.46	31.80	113.83	
157	55.75	39.51	0.42	1.44	33.41	112.85	
158	55.92	37.92	0.45	1.08	36.01	113.42	
159	56.08	36.92	0.50	1.04	37.37	114.34	
160	56.25	40.28	0.60	1.12	37.02	115.07	
161	56.41	42.81	0.59	1.05	36.07	114.79	
162	56.57	38.41	0.43	1.31	36.85	114.00	
163	56.74	34.07	0.46	1.04	35.44	112.66	
164	56.90	40.51	0.35	0.92	36.71	114.50	
165	57.07	43.88	0.76	0.84	36.02	116.16	
166	57.23	45.35	0.80	0.93	35.74	117.71	
167	57.40	51.07	0.74	0.97	32.32	117.16	
168	57.56	53.27	0.55	1.03	29.30	115.05	
169	57.72	43.99	0.28	1.30	28.72	112.97	
170	57.89	41.08	0.38	1.05	32.36	112.35	
170	58.05	36.79	0.50	0.97	35.30	112.49	
171	58.22	35.69	0.33	0.85	37.66	112.15	
172	58.38	31.36	0.29	0.59	38.83	109.86	
175	58.54	26.86	0.29	1.25	45.07	110.01	
175	58.71	23.98	0.28	0.81	49.33	110.01	
175	58.87	25.57	0.39	0.90	53.37	110.35	
170	59.04				53.82		
		22.79	0.38	0.93		111.22	
178	59.20	24.46	0.44	0.81	55.20	111.16	
179	59.36	23.64	0.36	0.55 0.56	51.38	110.48	
180	59.53	26.07	0.26		50.73	108.54	
181	59.69	20.05	0.21	0.55	53.32	106.57	
182	59.86	15.72	0.19	0.54	62.39	104.80	
183	60.02	13.12	0.16	0.43	71.62	103.64	
184	60.18	11.34	0.16	0.34	79.93	102.66	
185	60.35	9.93	0.15	0.34	87.27	102.23	
186	60.51	9.50	0.15	0.29	93.20	102.54	
187	60.68	9.47	0.19	0.28	95.99	102.93	
188	60.84	9.37	0.18	0.22	95.28	103.25	
189	61.00	10.06	0.17	0.18	89.74	103.13	
190	61.17	11.40	0.17	0.04	86.45	103.09	
191	61.33	10.70	0.17	0.06	87.05	102.59	

: Field inp	ut data ::	(continued	)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
193	61.66	9.32	0.16	-0.16	94.82	101.84	
194	61.82	9.37	0.15	-0.26	92.14	102.27	
195	61.99	10.68	0.16	-0.13	88.04	103.51	
196	62.15	12.09	0.23	-0.19	82.48	105.06	
197	62.32	13.66	0.25	-0.19	80.59	107.40	
198	62.48	14.85	0.37	-0.11	74.95	108.93	
199	62.64	18.23	0.38	-0.07	71.90	113.16	
200	62.81	24.89	0.91	-0.02	62.37	114.37	
201	62.97	28.89	0.53	0.09	56.44	115.81	
202	63.14	32.24	0.65	-0.11	50.99	115.01	
203	63.30	31.03	0.65	1.08	48.70	114.81	
204	63.46	32.40	0.46	0.44	46.48	113.52	
205	63.63	31.37	0.37	0.80	42.57	112.51	
205	63.79	35.10	0.37	0.71	40.97	112.31	
200	63.96	35.07	0.44	0.46	39.70	112.28	
207	64.12	36.50	0.41	0.46	43.44	112.75	
208	64.12		0.43	0.04	43.44	113.87	
		31.41					
210	64.45	29.89	0.78	0.00	51.58	116.55	
211	64.61	37.00	0.76	-0.06	48.00	118.08	
212	64.78	46.14	1.06	0.02	43.19	121.02	
213	64.94	60.41	1.77	0.56	41.34	124.90	
214	65.10	74.95	2.81	1.18	37.39	129.05	
215	65.27	112.66	4.39	2.90	27.69	131.82	
216	65.43	186.45	4.21	5.01	17.07	133.50	
217	65.60	289.71	3.74	10.08	10.31	133.62	
218	65.76	325.70	3.37	17.30	8.23	133.50	
219	65.93	277.04	3.64	7.26	10.44	132.90	
220	66.09	161.72	3.41	4.86	16.61	131.44	
221	66.25	95.07	2.58	5.58	27.50	129.52	
222	66.42	75.18	2.68	7.26	36.15	128.54	
223	66.58	79.98	3.08	6.93	38.08	129.11	
224	66.75	91.38	3.29	5.79	38.34	129.39	
225	66.91	77.75	3.00	5.91	40.57	128.52	
226	67.07	56.88	2.31	7.12	47.09	126.67	
227	67.24	43.59	1.92	6.77	53.51	124.70	
228	67.40	41.81	1.72	6.73	57.65	123.34	
229	67.57	37.35	1.55	7.32	58.32	121.43	
230	67.73	31.33	0.87	6.80	61.26	120.08	
231	67.89	29.33	1.16	7.46	62.78	118.63	
232	68.06	28.51	1.00	8.19	69.51	118.33	
233	68.22	20.31	0.88	9.35	67.18	117.59	
234	68.39	29.90	0.86	10.94	65.36	117.25	
235	68.55	29.89	0.86	12.95	58.94	117.61	
236	68.71	31.96	0.89	14.89	57.10	117.96	
237	68.88	34.80	0.94	17.66	54.49	118.52	
238	69.04	37.59	1.00	20.14	54.12	119.73	
239	69.21	38.72	1.33	22.69	54.78	121.11	
240	69.37	40.90	1.55	24.97	55.09	122.69	

: Field inp	ut data :: (	(continued	I)				
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
241	69.53	46.22	1.82	27.04	52.35	123.88	
242	69.70	53.37	1.96	26.17	48.43	124.52	
243	69.86	57.10	1.83	27.11	45.95	124.64	
244	70.03	55.58	1.81	21.48	44.99	124.64	
245	70.19	56.86	1.92	27.80	45.77	125.11	
246	70.35	58.53	2.18	30.06	45.04	125.67	
247	70.52	63.32	2.19	31.30	46.12	125.76	
248	70.68	53.80	2.03	30.64	47.90	126.39	
249	70.85	58.05	2.76	32.90	52.21	127.07	
250	71.01	55.08	2.99	37.52	54.18	127.63	
251	71.17	52.77	2.67	36.52	54.00	127.08	
252	71.34	54.14	2.21	20.28	53.59	125.85	
253	71.50	46.58	1.90	25.41	52.99	124.73	
254	71.67	46.01	1.79	28.62	54.89	123.64	
255	71.83	41.61	1.55	32.16	55.34	122.63	
256	71.99	39.02	1.31	33.38	56.74	121.99	
257	72.16	38.61	1.48	37.98	57.61	122.31	
258	72.32	41.42	1.75	41.77	58.61	123.40	
259	72.49	43.12	1.98	40.34	59.24	123.93	
260	72.65	40.51	1.84	33.90	60.03	123.55	
261	72.81	37.41	1.53	37.96	59.60	122.45	
262	72.98	37.80	1.30	40.66	59.07	121.13	
263	73.14	34.55	1.14	40.97	58.71	120.03	
264	73.31	32.53	1.02	44.90	59.39	119.40	
265	73.47	33.40	1.02	51.46	58.36	119.69	
265	73.64	37.95	1.23	49.69	58.56	120.71	
267	73.80	37.17	1.46	56.39	58.13	122.02	
268	73.96	41.44	1.69	58.12	60.28	123.12	
269	74.13	39.27	1.92	61.88	63.50	124.62	
270	74.29	38.92	2.59	59.34	67.56	126.53	
271	74.46	44.22	3.47	68.72	63.81	129.19	
272	74.62	68.46	4.65	30.57	53.51	131.02	
273	74.78	92.94	4.34	21.66	48.24	131.17	
274	74.95	69.08	3.27	9.32	46.90	128.91	
275	75.11	47.80	1.68	9.50	50.76	125.37	
276	75.28	45.13	1.29	16.31	53.91	122.47	
277	75.44	39.55	1.52	21.25	57.06	122.35	
278	75.60	39.10	1.70	26.22	58.07	123.26	
279	75.77	48.13	1.85	28.30	56.09	123.74	
280	75.93	48.01	1.75	18.27	55.56	123.26	
281	76.10	37.57	1.38	19.00	55.86	121.97	
282	76.26	39.52	1.14	22.59	56.83	120.32	
283	76.42	36.44	1.00	27.48	56.35	119.28	
284	76.59	33.22	0.95	30.87	57.98	118.67	
285	76.75	33.10	0.95	34.53	60.35	118.61	
286	76.92	31.48	1.02	36.61	61.87	119.05	
287	77.08	32.36	1.14	38.98	63.74	119.74	
288	77.24	32.77	1.26	41.40	64.74	120.18	

Point ID	Depth		_				
	(ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
289	77.41	31.72	1.23	40.92	66.37	120.61	
290	77.57	31.48	1.37	45.01	66.82	120.95	
291	77.74	33.56	1.43	44.56	66.22	121.34	
292	77.90	34.34	1.41	64.51	64.08	121.39	
293	78.06	35.41	1.34	69.47	63.58	121.24	
294	78.23	33.36	1.34	81.14	62.07	121.32	
295	78.39	37.48	1.41	88.05	61.60	121.62	
296	78.56	38.05	1.48	70.40	61.96	121.68	
297	78.72	33.49	1.38	49.97	61.49	121.13	
298	78.88	36.44	1.12	36.76	61.65	120.14	
299	79.05	33.35	1.03	41.36	62.12	119.44	
300	79.21	29.48	1.10	46.01	66.27	119.46	
301	79.38	29.08	1.21	57.50	67.63	120.35	
302	79.54	34.77	1.44	58.35	66.58	121.22	
303	79.70	34.97	1.49	66.43	64.63	122.92	
304	79.87	41.32	2.10	69.82	66.28	124.68	
305	80.03	41.06	2.69	80.49	63.16	127.03	
306	80.20	57.55	3.38	96.13	54.78	129.19	
307	80.36	87.31	3.94	22.11	49.69	131.27	
308	80.52	85.46	5.09	9.24	50.28	132.47	
309	80.69	72.12	5.33	11.65	51.73	133.08	
310	80.85	89.06	5.14	20.62	41.56	133.34	
311	81.02	146.82	4.51	4.02	30.19	133.75	
312	81.18	179.38	4.69	0.80	23.93	134.38	
313	81.35	190.51	5.34	0.64	21.98	135.19	
314	81.51	207.15	5.62	1.11	20.98	135.83	
315	81.67	222.63	5.73	1.29	19.82	136.24	
316	81.84	231.90	5.92	1.33	19.10	136.51	
317		235.79	6.01	1.66	18.80	136.57	
	82.00		5.79	1.50	19.04		
318 319	82.17	232.96		1.45		136.58	
	82.33	227.08	6.00		20.86 28.39	136.11 134.76	
320	82.49	174.82	5.40	1.05			
321	82.66	106.41	4.01	0.24	36.60	132.61	
322	82.82	72.62	3.54	1.16	48.05	130.19	
323	82.99	54.78	3.13	6.22	57.04	128.19	
324 225	83.15	46.60	2.30	10.43	63.28	126.64	
325	83.31	41.22	2.32	14.05	68.92	126.48	
326	83.48	40.09	3.24	16.20	65.80	128.42	
327	83.64	67.81	4.17	21.69	55.63	131.06	
328	83.81	100.62	5.08	17.69	44.47	132.79	
329	83.97	125.17	4.87	12.07	37.89	133.64	
330	84.13	138.01	4.81	8.43	32.58	133.88	
331	84.30	165.12	4.77	5.39	29.52	134.10	
332	84.46	173.32	4.80	4.22	27.80	134.23	
333	84.63	168.98	4.76	3.64	28.11	134.31	
334	84.79	162.74	4.95	2.88	29.53	134.35	
335	84.95	152.56	5.09	1.81	32.85	133.99	

:: Field inp	ut data ::	(continued	)				
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
337	85.28	116.17	3.38	0.87	37.78	131.16	
338	85.45	90.59	2.98	0.81	39.69	129.28	
339	85.61	69.84	2.56	0.92	46.99	127.41	
340	85.77	50.06	2.03	1.86	52.19	125.50	
341	85.94	50.74	1.66	3.05	55.98	123.84	
342	86.10	44.85	1.56	3.48	58.20	123.18	
343	86.27	39.59	1.70	4.20	67.87	123.87	
344	86.43	32.62	2.41	5.73	73.88	125.71	
345	86.59	43.52	3.21	7.85	58.38	128.59	
346	86.76	100.28	3.81	7.65	44.15	131.16	
347	86.92	131.32	4.53	4.65	36.59	132.87	
348	87.09	135.03	4.92	4.21	35.10	133.51	
349	87.25	129.82	4.66	4.24	36.02	133.29	
350	87.41	117.03	4.28	3.33	37.51	132.37	
351	87.58	102.11	3.66	3.32	41.49	130.41	
352	87.74	64.28	2.38	2.74	48.07	127.54	
353	87.91	42.58	1.68	3.71	58.58	123.63	
354	88.07	31.64	1.13	6.64	68.17	121.05	
355	88.23	29.01	1.21	9.26	75.53	120.43	
356	88.40	28.40	1.54	11.09	79.47	123.11	
357	88.56	37.15	2.73	14.15	64.56	127.10	
358	88.73	81.16	3.90	21.82	57.82	129.84	
359	88.89	73.84	4.24	8.99	51.08	131.67	
360	89.06	88.75	4.75	11.17	49.48	132.36	
361	89.22	99.92	4.83	7.90	47.66	133.11	
362	89.38	96.50	5.31	5.33	46.52	133.28	
363	89.55	99.38	4.92	5.41	45.73	133.17	
				5.55			
364	89.71	104.01	4.55		39.94	133.01	
365	89.88	139.24	4.35	5.06	32.85	133.20	
366	90.04	177.64	4.36	4.24	24.91	133.45	
367	90.20	233.04	3.83	4.13	18.78	134.02	
368	90.37	306.33	4.22	4.67	14.71	134.60	
369	90.53	349.13	4.46	4.26	12.98	135.27	
370	90.70	349.30	4.47	4.72	12.40	135.37	
371	90.86	343.95	4.25	4.16	13.04	135.09	
372	91.02	300.33	4.17	3.77	15.11	134.85	
373	91.19	242.40	4.54	3.33	20.02	134.49	
374	91.35	160.29	4.61	2.51	27.06	134.59	
375	91.52	145.51	5.52	3.83	32.66	134.92	
376	91.68	163.57	6.03	10.94	29.99	135.66	
377	91.84	221.68	5.61	6.49	24.57	136.04	
378	92.01	263.79	5.27	6.19	20.37	136.06	
379	92.17	274.65	5.21	6.01	19.22	136.11	
380	92.34	260.39	5.45	6.10	19.34	136.52	
381	92.50	279.63	6.09	5.46	17.80	137.06	
382	92.66	355.86	5.91	6.72	15.28	137.28	
383	92.83	401.32	5.98	7.35	13.01	137.28	
384	92.99	415.26	5.85	7.60	11.91	137.28	

: Field inp	ut data ::	(continue	d)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
385	93.16	420.09	5.39	6.95	10.71	137.28	
386	93.32	475.15	5.30	7.95	9.40	137.27	
387	93.48	495.04	4.83	7.58	8.45	137.09	
388	93.65	491.76	4.77	8.14	8.15	136.86	
389	93.81	485.31	4.80	7.72	8.01	136.63	
390	93.98	491.45	4.40	7.64	7.84	136.57	
391	94.14	503.70	4.61	8.07	7.67	136.65	
392	94.30	510.35	4.88	8.64	7.85	136.83	
393	94.47	490.38	4.75	7.62	8.31	136.79	
394	94.63	456.78	4.68	7.82	8.62	136.53	
395	94.80	462.14	4.54	7.09	9.09	136.51	
396	94.96	449.17	4.85	6.99	9.47	136.71	
397	95.12	441.05	5.12	6.88	10.23	137.28	
398	95.29	445.81	5.79	7.18	11.01	137.28	
399	95.45	449.08	6.58	7.63	11.80	137.28	
400	95.62	450.89	7.26	8.26	12.64	137.28	
401	95.78	446.84	7.91	8.77	13.23	137.28	
402	95.94	440.88	7.83	8.46	13.57	137.28	
403	96.11	452.67	8.22	8.78	13.65	137.28	
404	96.27	460.21	8.56	8.98	13.99	137.28	
405	96.44	436.11	8.56	7.82	14.24	137.28	
406	96.60	449.36	8.75	8.06	14.62	137.28	
407	96.77	431.57	8.51	8.42	14.20	137.28	
408	96.93	450.65	7.89	8.29	13.74	137.28	
409	97.09	446.63	7.37	8.59	13.07	137.28	
410	97.26	425.02	6.50	7.40	12.63	137.28	
411	97.42	429.22	6.07	7.43	12.71	137.28	
412	97.59	422.64	6.78	7.37	13.13	137.28	
413	97.75	423.56	7.41	7.88	14.05	137.28	
414	97.91	412.47	7.73	9.32	14.30	137.28	
415	98.08	429.89	7.63	9.48	14.72	137.28	
416	98.24	401.23	7.64	7.95	14.33	137.28	
417	98.41	424.60	7.15	8.38	14.07	137.28	
418	98.57	420.53	6.61	8.14	13.50	137.28	
419	98.73	417.48	6.79	8.94	13.40	137.28	
420	98.90	426.02	6.92	8.70	13.57	137.28	
421	99.06	422.83	7.04	8.71	13.63	137.28	
422	99.23	422.58	7.07	9.58	13.80	137.28	
423	99.39	416.01	6.98	9.46	13.63	137.28	
424	99.55	417.28	6.40	9.50	13.29	137.28	
425	99.72	419.43	6.14	9.09	12.67	137.28	
426	99.88	432.38	6.03	9.68	N/A	137.28	
427	100.05	435.13	-260034./	9.98	, N/A	137.28	
428	100.21	473.18	-260034.7	10.18	, N/A	137.28	
		481.02	1 -260034.7	10.19		-	

:: Field inp	:: Field input data :: (continued)									
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)				

## Abbreviations

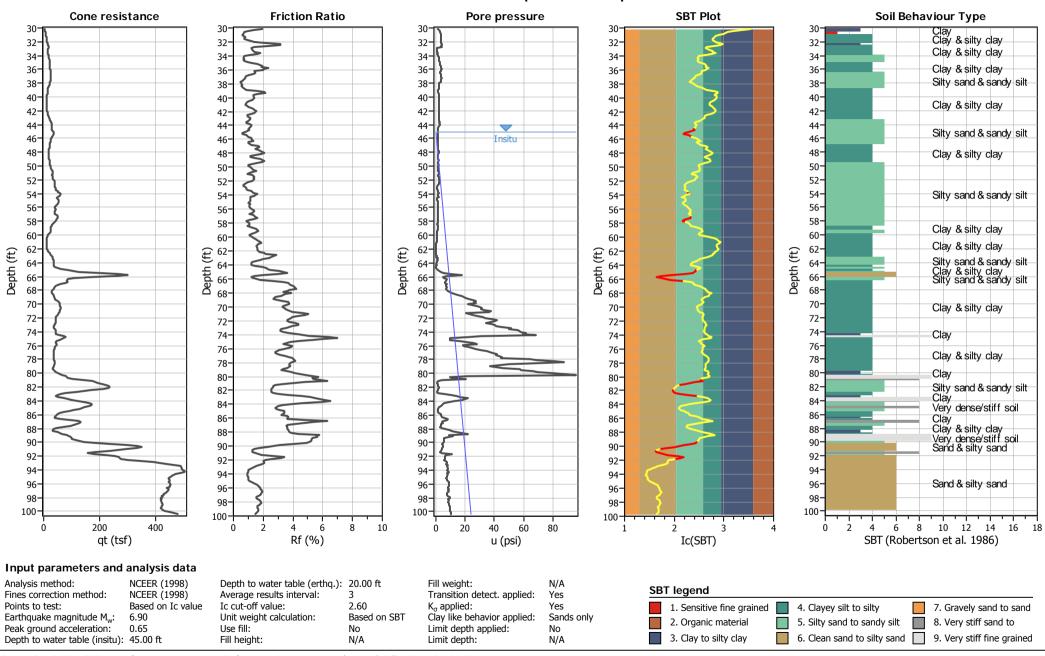
Depth:	Depth from free surface, at which CPT was performed (ft)
q _c :	Measured cone resistance (tsf)
f _s :	Sleeve friction resistance (tsf)
u:	Pore pressure (tsf)
Fines content:	Percentage of fines in soil (%)
Unit weight:	Bulk soil unit weight (pcf)





Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

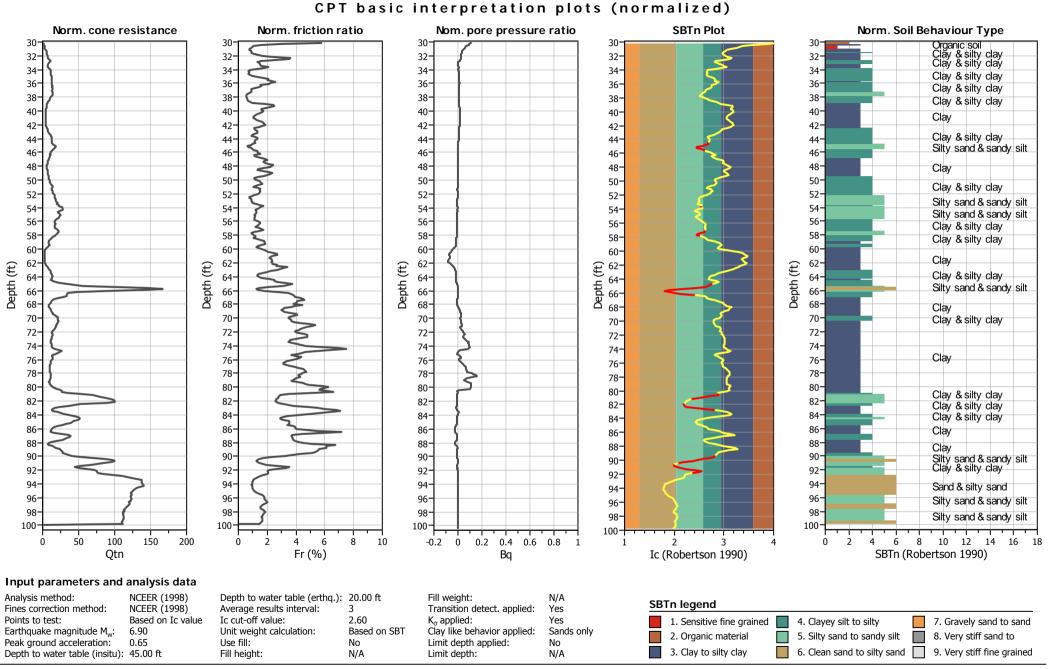
LIQUEFACTION ANALYSIS REPORT

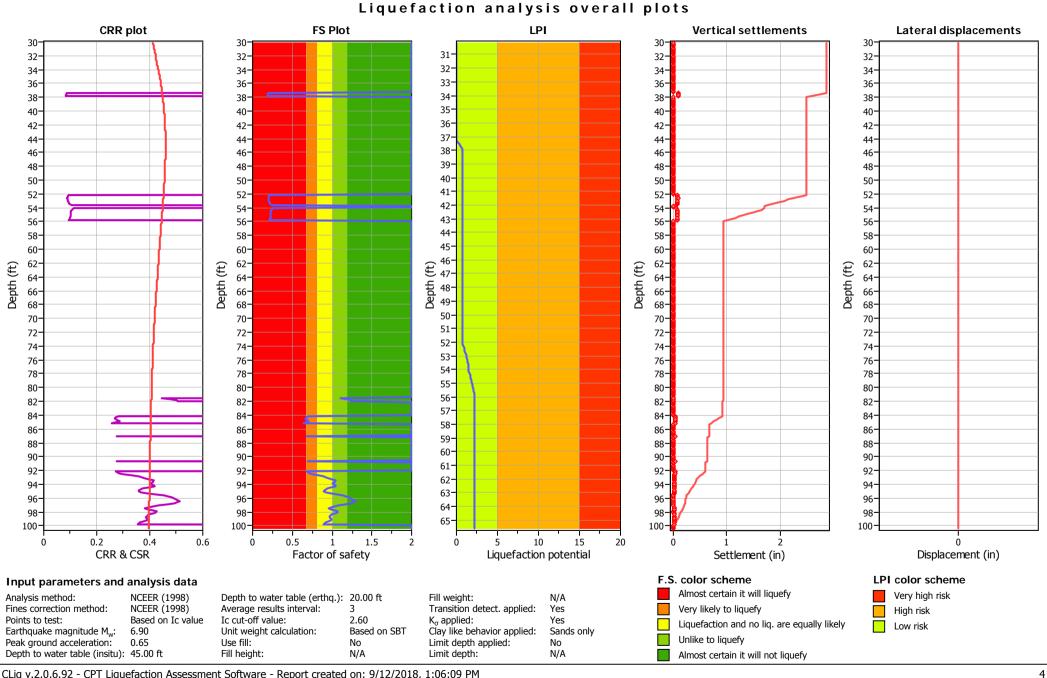

# Project title : 21545 - TF Boadway LP

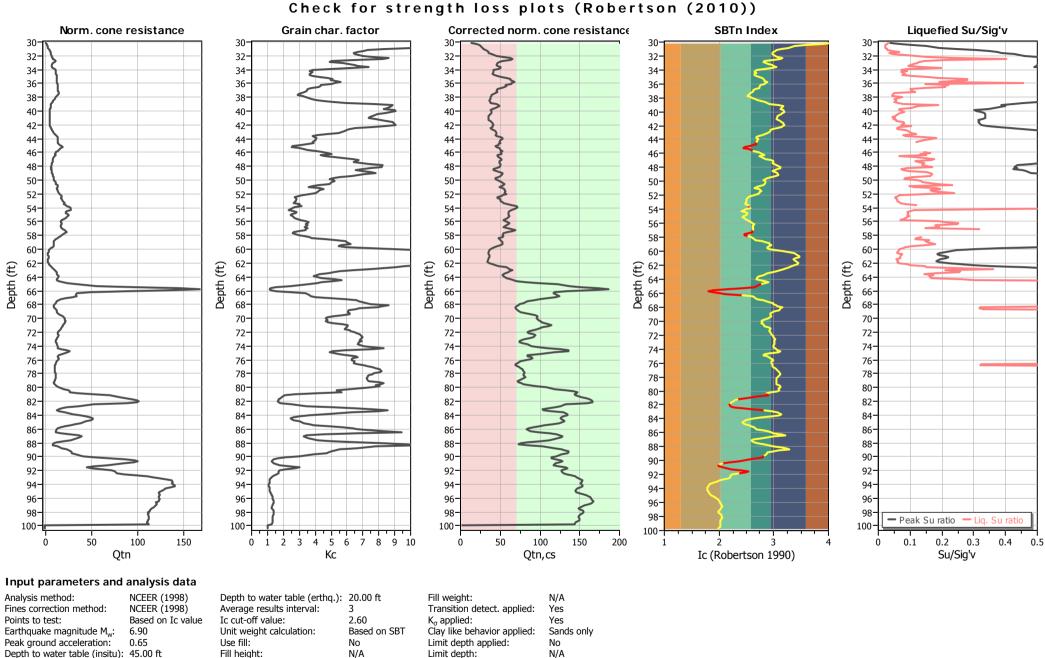
## Location : 942 N. Broadway, Los Angeles, CA

# CPT file : CPT-02

#### Input parameters and analysis data





**CPT** basic interpretation plots

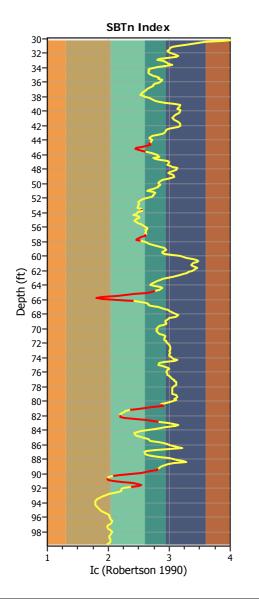
CLiq v.2.0.6.92 - CPT Liquefaction Assessment Software - Report created on: 9/12/2018, 1:06:09 PM Project file: C:\Users\sprince\Desktop\21545 - TF Broadway LP (10%) 30 Foot Adjusted.clq

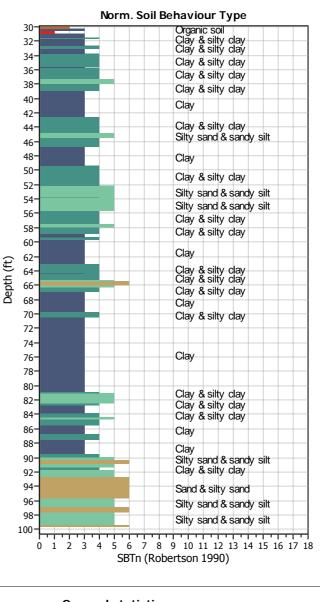
CPT name: CPT-02








5


# TRANSITION LAYER DETECTION ALGORITHM REPORT Summary Details & Plots

## Short description

The software will delete data when the cone is in transition from either clay to sand or vise-versa. To do this the software requires a range of  $I_c$  values over which the transition will be defined (typically somewhere between 1.80 <  $I_c$  < 3.0) and a rate of change of  $I_c$ . Transitions typically occur when the rate of change of  $I_c$  is fast (i.e. delta  $I_c$  is small).

The SBT_n plot below, displays in red the detected transition layers based on the parameters listed below the graphs.





Transition layer algorithm prope	erties	General statistics				
I _c minimum check value:	1.70	Total points in CPT file:	429			
I _c maximum check value:	3.00	Total points excluded:	54			
I _c change ratio value:	0.0250	Exclusion percentage:	12.59%			
Minimum number of points in layer:	2	Number of layers detected:	12			

:: Field inp	ut data ::					
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)
1	30.16	1.75	0.04	1.06	100.00	88.44
2	30.33	2.53	0.04	1.59	100.00	88.39
3	30.49	3.38	0.03	2.53	100.00	88.37
4	30.66	4.18	0.03	2.66	88.19	88.12
5	30.82	4.95	0.03	2.97	78.17	89.31
6	30.98	5.75	0.04	3.10	68.46	90.47
7	31.15	7.32	0.04	3.29	61.94	92.69
8	31.31	8.64	0.06	2.94	60.16	95.20
9	31.48	8.40	0.09	3.21	58.20	95.72
10	31.64	8.82	0.05	3.33	56.62	95.82
11	31.80	9.67	0.06	3.32	56.86	98.49
12	31.97	10.86	0.17	3.46	60.08	102.14
13	32.13	10.98	0.22	3.29	63.56	105.88
14	32.30	12.47	0.34	3.57	69.31	109.25
15	32.46	12.37	0.58	3.53	67.11	109.99
16	32.62	13.76	0.31	3.49	57.37	109.59
17	32.79	19.66	0.21	3.58	47.81	106.57
18	32.95	16.00	0.19	0.22	46.64	105.00
19	33.12	12.19	0.19	0.41	52.27	103.80
20	33.28	12.15	0.15	0.50	56.68	103.00
20	33.44	11.17	0.13	0.30	57.84	102.75
21	33.61	12.07	0.14	0.79	61.98	105.20
22	33.01	12.07	0.21	0.79	55.76	105.45
23	33.94	12.27	0.30	0.72	47.41	105.45
24	34.10	18.44	0.14	0.82	39.23	104.58
25	34.10 34.27	18.44	0.11	2.01	39.23	102.35
20	34.27	17.51	0.14	1.89	37.93	101.81
	34.43					
28		17.36	0.13	1.73	37.87	101.83
29	34.76	19.66	0.12	1.71	38.00	103.07
30	34.92	19.97	0.17	2.68	39.26	105.01
31	35.09	19.83	0.25	2.61	42.69	107.12
32	35.25	19.73	0.30	2.60	46.02	109.60
33	35.41	21.72	0.45	2.82	47.96	110.98
34	35.58	21.07	0.45	3.39	47.25	111.10
35	35.74	21.25	0.31	3.06	51.20	112.64
36	35.91	20.94	0.74	3.58	49.02	111.54
37	36.07	21.02	0.24	3.49	47.45	111.95
38	36.23	24.86	0.36	3.10	43.01	109.33
39	36.40	20.28	0.34	2.81	42.78	110.26
40	36.56	24.30	0.35	2.57	42.09	109.32
41	36.73	23.43	0.24	3.26	38.86	107.90
42	36.89	21.94	0.17	3.14	36.91	106.00
43	37.05	22.80	0.18	3.32	36.44	105.47
44	37.22	23.10	0.20	3.54	35.49	105.98
45	37.38	25.29	0.20	3.43	33.76	105.23
46	37.55	24.47	0.12	3.31	32.20	104.02
47	37.71	23.39	0.12	3.30	31.54	102.02
48	37.87	21.96	0.10	3.10	34.34	102.04

Field inp	ut data :: (	continued	)				
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
49	38.04	19.16	0.13	2.06	36.08	101.20	
50	38.20	18.79	0.09	1.84	38.77	101.02	
51	38.37	17.59	0.10	1.94	40.50	100.12	
52	38.53	15.35	0.10	1.88	44.31	99.88	
53	38.69	13.95	0.09	1.89	48.59	99.91	
54	38.86	13.41	0.11	1.78	53.80	100.62	
55	39.02	12.03	0.14	1.45	63.98	104.52	
56	39.19	11.76	0.34	1.41	70.98	105.69	
57	39.35	10.71	0.23	1.44	70.41	106.27	
58	39.51	13.26	0.19	1.90	69.06	103.59	
59	39.68	9.14	0.12	1.72	67.65	101.83	
60	39.84	9.55	0.12	1.52	71.64	100.67	
61	40.01	10.07	0.14	1.52	72.00	101.27	
62	40.17	9.66	0.15	1.50	70.14	101.55	
63	40.33	10.86	0.13	1.50	68.21	101.26	
64	40.50	10.87	0.12	1.64	65.51	100.33	
65	40.66	10.27	0.10	1.58	63.61	99.20	
66	40.83	10.87	0.08	1.62	62.52	98.72	
67	40.99	11.12	0.10	1.57	62.03	98.46	
68	41.15	10.40	0.09	1.52	64.65	99.17	
69	41.32	10.13	0.11	1.47	66.64	99.35	
70	41.48	10.27	0.11	1.67	68.69	100.67	
71	41.65	10.73	0.15	1.66	70.74	101.60	
72	41.81	10.12	0.16	1.74	71.27	102.13	
73	41.98	10.66	0.14	1.67	71.91	102.95	
74	42.14	11.41	0.20	1.75	68.45	102.62	
75	42.30	11.76	0.13	1.71	63.53	102.52	
76	42.47	13.75	0.12	1.67	57.24	101.29	
77	42.63	14.60	0.12	1.80	55.03	102.23	
78	42.80	15.14	0.17	1.74	53.94	103.56	
79	42.96	16.94	0.19	1.77	53.09	104.99	
80	43.12	18.05	0.21	2.11	50.71	106.06	
81	43.29	19.89	0.24	2.13	45.84	105.96	
82	43.45	22.84	0.16	2.10	41.45	105.69	
83	43.62	24.00	0.17	2.33	39.38	106.51	
84	43.78	25.71	0.29	2.05	40.01	108.83	
85	43.94	28.65	0.37	2.44	41.26	110.27	
86	44.11	26.46	0.34	2.17	40.83	110.38	
87	44.27	27.16	0.30	1.88	40.55	109.38	
88	44.44	26.08	0.25	0.83	39.07	108.82	
89	44.60	27.77	0.27	0.85	39.74	109.26	
90	44.76	27.46	0.35	1.21	36.88	108.68	
91	44.93	30.26	0.17	1.20	33.51	108.93	
92	45.09	36.93	0.27	1.08	28.80	107.47	
93	45.26	35.68	0.19	1.18	28.24	108.02	
94	45.42	34.34	0.21	1.13	32.93	109.38	
95	45.58	28.24	0.43	1.31	36.70	109.68	
96	45.75	27.45	0.25	1.08	41.03	110.26	

Field inp	ut data :: (	continued	)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
97	45.91	27.29	0.31	1.22	43.59	109.42	
98	46.08	20.95	0.35	1.02	45.77	109.55	
99	46.24	24.37	0.28	0.96	47.76	109.53	
100	46.40	24.28	0.32	1.15	42.73	107.81	
101	46.57	24.04	0.14	0.91	44.52	107.37	
102	46.73	20.41	0.25	1.06	48.93	107.77	
103	46.90	19.14	0.38	1.01	55.99	109.43	
104	47.06	19.61	0.36	0.85	58.34	109.31	
105	47.22	17.45	0.25	0.95	57.77	108.39	
106	47.39	17.80	0.27	1.41	56.56	107.98	
107	47.55	20.16	0.31	1.03	59.56	108.30	
108	47.72	14.94	0.30	0.84	62.42	108.43	
109	47.88	15.30	0.30	1.52	67.43	108.70	
110	48.04	16.34	0.37	1.57	66.74	107.86	
111	48.21	14.02	0.20	1.34	63.03	106.63	
112	48.37	16.30	0.16	1.33	59.77	104.22	
113	48.54	15.20	0.17	1.45	57.37	104.50	
114	48.70	16.79	0.21	1.43	59.99	106.57	
115	48.86	17.53	0.33	1.42	62.77	108.34	
116	49.03	16.03	0.36	1.21	64.58	109.58	
117	49.19	17.66	0.37	1.56	60.54	110.02	
118	49.36	22.61	0.36	1.12	55.90	109.32	
119	49.52	19.86	0.24	1.03	50.96	107.92	
120	49.69	20.23	0.19	1.35	48.36	105.99	
121	49.85	21.43	0.19	1.65	47.02	106.45	
122	50.01	22.77	0.10	1.26	48.32	107.66	
123	50.18	21.51	0.30	1.24	48.90	107.00	
125	50.34	24.00	0.30	1.10	47.48	110.20	
125	50.54	28.59	0.31	1.10	47.02	111.82	
	50.51			0.97	47.02	111.50	
126	50.87	27.48	0.52	1.59	39.22		
127		32.15	0.22			110.47 109.62	
128	51.00	30.76	0.25	2.11	37.59		
129	51.16	28.14	0.41	2.13	42.34	111.13	
130	51.33	27.66	0.44	1.01	44.36	111.86	
131	51.49	29.58	0.37	1.03	42.66	111.76	
132	51.65	31.19	0.38	1.67	42.11	112.45	
133	51.82	31.50	0.54	1.57	40.45	112.37	
134	51.98	32.95	0.34	1.50	37.68	113.11	
135	52.15	41.09	0.47	2.47	34.25	111.76	
136	52.31	34.90	0.30	1.93	32.21	111.06	
137	52.47	35.98	0.23	1.83	30.35	109.09	
138	52.64	38.50	0.24	1.94	30.55	108.98	
139	52.80	33.91	0.29	1.25	31.06	110.66	
140	52.97	41.74	0.41	0.36	30.58	111.20	
141	53.13	42.76	0.30	0.59	30.19	112.22	
142	53.29	40.48	0.42	0.64	29.73	112.61	
143	53.46	45.57	0.46	0.83	32.67	114.41	

. Field inp	ut data :: (	continued	)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
145	53.79	53.25	0.81	1.08	33.66	118.18	
146	53.95	52.91	0.97	1.48	30.10	118.66	
147	54.11	61.04	0.69	1.08	28.74	118.46	
148	54.28	58.48	0.72	0.89	26.75	116.73	
149	54.44	49.66	0.48	1.72	29.76	115.85	
150	54.61	40.82	0.55	0.76	31.18	115.16	
151	54.77	48.45	0.60	0.67	30.69	115.35	
152	54.93	52.91	0.51	0.54	28.59	115.57	
153	55.10	51.26	0.56	0.89	27.62	115.40	
154	55.26	51.89	0.55	1.29	29.08	115.68	
155	55.43	48.34	0.59	1.38	29.85	114.71	
156	55.59	41.87	0.38	1.46	31.80	113.83	
157	55.75	39.51	0.42	1.44	33.41	112.85	
158	55.92	37.92	0.45	1.08	36.01	113.42	
159	56.08	36.92	0.50	1.04	37.37	114.34	
160	56.25	40.28	0.60	1.12	37.02	115.07	
161	56.41	42.81	0.59	1.05	36.07	114.79	
162	56.57	38.41	0.43	1.31	36.85	114.00	
163	56.74	34.07	0.46	1.04	35.44	112.66	
164	56.90	40.51	0.35	0.92	36.71	114.50	
165	57.07	43.88	0.76	0.84	36.02	116.16	
166	57.23	45.35	0.80	0.93	35.74	117.71	
167	57.40	51.07	0.74	0.97	32.32	117.16	
168	57.56	53.27	0.55	1.03	29.30	115.05	
169	57.72	43.99	0.28	1.30	28.72	112.97	
170	57.89	41.08	0.38	1.05	32.36	112.35	
170	58.05	36.79	0.50	0.97	35.30	112.49	
171	58.22	35.69	0.33	0.85	37.66	112.15	
172	58.38	31.36	0.29	0.59	38.83	109.86	
175	58.54	26.86	0.29	1.25	45.07	110.01	
175	58.71	23.98	0.28	0.81	49.33	110.01	
175	58.87	25.57	0.39	0.90	53.37	110.35	
170	59.04				53.82		
		22.79	0.38	0.93		111.22	
178	59.20	24.46	0.44	0.81	55.20	111.16	
179	59.36	23.64	0.36	0.55 0.56	51.38	110.48	
180	59.53	26.07	0.26		50.73	108.54	
181	59.69	20.05	0.21	0.55	53.32	106.57	
182	59.86	15.72	0.19	0.54	62.39	104.80	
183	60.02	13.12	0.16	0.43	71.62	103.64	
184	60.18	11.34	0.16	0.34	79.93	102.66	
185	60.35	9.93	0.15	0.34	87.27	102.23	
186	60.51	9.50	0.15	0.29	93.20	102.54	
187	60.68	9.47	0.19	0.28	95.99	102.93	
188	60.84	9.37	0.18	0.22	95.28	103.25	
189	61.00	10.06	0.17	0.18	89.74	103.13	
190	61.17	11.40	0.17	0.04	86.45	103.09	
191	61.33	10.70	0.17	0.06	87.05	102.59	

Field inp	ut data ::	(continued	)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
193	61.66	9.32	0.16	-0.16	94.82	101.84	
194	61.82	9.37	0.15	-0.26	92.14	102.27	
195	61.99	10.68	0.16	-0.13	88.04	103.51	
196	62.15	12.09	0.23	-0.19	82.48	105.06	
197	62.32	13.66	0.25	-0.19	80.59	107.40	
198	62.48	14.85	0.37	-0.11	74.95	108.93	
199	62.64	18.23	0.38	-0.07	71.90	113.16	
200	62.81	24.89	0.91	-0.02	62.37	114.37	
201	62.97	28.89	0.53	0.09	56.44	115.81	
202	63.14	32.24	0.65	-0.11	50.99	115.01	
203	63.30	31.03	0.65	1.08	48.70	114.81	
204	63.46	32.40	0.46	0.44	46.48	113.52	
205	63.63	31.37	0.37	0.80	42.57	112.51	
206	63.79	35.10	0.44	0.71	40.97	112.28	
207	63.96	35.07	0.41	0.46	39.70	112.75	
208	64.12	36.50	0.43	0.04	43.44	113.87	
209	64.28	31.41	0.67	0.15	49.07	115.35	
210	64.45	29.89	0.78	0.00	51.58	116.55	
211	64.61	37.00	0.76	-0.06	48.00	118.08	
212	64.78	46.14	1.06	0.02	43.19	121.02	
213	64.94	60.41	1.77	0.56	41.34	124.90	
214	65.10	74.95	2.81	1.18	37.39	129.05	
215	65.27	112.66	4.39	2.90	27.69	131.82	
216	65.43	186.45	4.21	5.01	17.07	133.50	
217	65.60	289.71	3.74	10.08	10.31	133.62	
218	65.76	325.70	3.37	17.30	8.23	133.50	
219	65.93	277.04	3.64	7.26	10.44	132.90	
220	66.09	161.72	3.41	4.86	16.61	131.44	
221	66.25	95.07	2.58	5.58	27.50	129.52	
222	66.42	75.18	2.68	7.26	36.15	128.54	
223	66.58	79.98	3.08	6.93	38.08	129.11	
224	66.75	91.38	3.29	5.79	38.34	129.39	
225	66.91	77.75	3.00	5.91	40.57	129.55	
226	67.07	56.88	2.31	7.12	47.09	126.67	
227	67.24	43.59	1.92	6.77	53.51	120.07	
228	67.40	41.81	1.32	6.73	57.65	124.70	
229	67.57	37.35	1.55	7.32	58.32	123.34	
229	67.73	31.33	0.87	6.80	61.26	121.45	
230	67.89	29.33	1.16	7.46	62.78	118.63	
231	68.06	29.33	1.10	8.19	69.51	118.33	
232	68.22	20.31	0.88	9.35	67.18	117.59	
233	68.39	20.31	0.86	9.55	65.36	117.39	
234	68.55	29.90	0.86	10.94	58.94	117.25	
				12.95		117.61	
236	68.71	31.96	0.89		57.10		
237	68.88	34.80	0.94	17.66	54.49	118.52	
238	69.04	37.59	1.00	20.14	54.12	119.73	
239 240	69.21 69.37	38.72 40.90	1.33 1.55	22.69 24.97	54.78 55.09	121.11 122.69	

: Field inp	ut data :: (	(continued	I)				
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
241	69.53	46.22	1.82	27.04	52.35	123.88	
242	69.70	53.37	1.96	26.17	48.43	124.52	
243	69.86	57.10	1.83	27.11	45.95	124.64	
244	70.03	55.58	1.81	21.48	44.99	124.64	
245	70.19	56.86	1.92	27.80	45.77	125.11	
246	70.35	58.53	2.18	30.06	45.04	125.67	
247	70.52	63.32	2.19	31.30	46.12	125.76	
248	70.68	53.80	2.03	30.64	47.90	126.39	
249	70.85	58.05	2.76	32.90	52.21	127.07	
250	71.01	55.08	2.99	37.52	54.18	127.63	
251	71.17	52.77	2.67	36.52	54.00	127.08	
252	71.34	54.14	2.21	20.28	53.59	125.85	
253	71.50	46.58	1.90	25.41	52.99	124.73	
254	71.67	46.01	1.79	28.62	54.89	123.64	
255	71.83	41.61	1.55	32.16	55.34	122.63	
256	71.99	39.02	1.31	33.38	56.74	121.99	
257	72.16	38.61	1.48	37.98	57.61	122.31	
258	72.32	41.42	1.75	41.77	58.61	123.40	
259	72.49	43.12	1.98	40.34	59.24	123.93	
260	72.65	40.51	1.84	33.90	60.03	123.55	
261	72.81	37.41	1.53	37.96	59.60	122.45	
262	72.98	37.80	1.30	40.66	59.07	121.13	
263	73.14	34.55	1.14	40.97	58.71	120.03	
264	73.31	32.53	1.02	44.90	59.39	119.40	
265	73.47	33.40	1.02	51.46	58.36	119.69	
265	73.64	37.95	1.23	49.69	58.56	120.71	
267	73.80	37.17	1.46	56.39	58.13	122.02	
268	73.96	41.44	1.69	58.12	60.28	123.12	
269	74.13	39.27	1.92	61.88	63.50	124.62	
270	74.29	38.92	2.59	59.34	67.56	126.53	
271	74.46	44.22	3.47	68.72	63.81	129.19	
272	74.62	68.46	4.65	30.57	53.51	131.02	
273	74.78	92.94	4.34	21.66	48.24	131.17	
274	74.95	69.08	3.27	9.32	46.90	128.91	
275	75.11	47.80	1.68	9.50	50.76	125.37	
276	75.28	45.13	1.29	16.31	53.91	122.47	
277	75.44	39.55	1.52	21.25	57.06	122.35	
278	75.60	39.10	1.70	26.22	58.07	123.26	
279	75.77	48.13	1.85	28.30	56.09	123.74	
280	75.93	48.01	1.75	18.27	55.56	123.26	
281	76.10	37.57	1.38	19.00	55.86	121.97	
282	76.26	39.52	1.14	22.59	56.83	120.32	
283	76.42	36.44	1.00	27.48	56.35	119.28	
284	76.59	33.22	0.95	30.87	57.98	118.67	
285	76.75	33.10	0.95	34.53	60.35	118.61	
286	76.92	31.48	1.02	36.61	61.87	119.05	
287	77.08	32.36	1.14	38.98	63.74	119.74	
288	77.24	32.77	1.26	41.40	64.74	120.18	

Point ID	Depth		_				
	(ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
289	77.41	31.72	1.23	40.92	66.37	120.61	
290	77.57	31.48	1.37	45.01	66.82	120.95	
291	77.74	33.56	1.43	44.56	66.22	121.34	
292	77.90	34.34	1.41	64.51	64.08	121.39	
293	78.06	35.41	1.34	69.47	63.58	121.24	
294	78.23	33.36	1.34	81.14	62.07	121.32	
295	78.39	37.48	1.41	88.05	61.60	121.62	
296	78.56	38.05	1.48	70.40	61.96	121.68	
297	78.72	33.49	1.38	49.97	61.49	121.13	
298	78.88	36.44	1.12	36.76	61.65	120.14	
299	79.05	33.35	1.03	41.36	62.12	119.44	
300	79.21	29.48	1.10	46.01	66.27	119.46	
301	79.38	29.08	1.21	57.50	67.63	120.35	
302	79.54	34.77	1.44	58.35	66.58	121.22	
303	79.70	34.97	1.49	66.43	64.63	122.92	
304	79.87	41.32	2.10	69.82	66.28	124.68	
305	80.03	41.06	2.69	80.49	63.16	127.03	
306	80.20	57.55	3.38	96.13	54.78	129.19	
307	80.36	87.31	3.94	22.11	49.69	131.27	
308	80.52	85.46	5.09	9.24	50.28	132.47	
309	80.69	72.12	5.33	11.65	51.73	133.08	
310	80.85	89.06	5.14	20.62	41.56	133.34	
311	81.02	146.82	4.51	4.02	30.19	133.75	
312	81.18	179.38	4.69	0.80	23.93	134.38	
313	81.35	190.51	5.34	0.64	21.98	135.19	
314	81.51	207.15	5.62	1.11	20.98	135.83	
315	81.67	222.63	5.73	1.29	19.82	136.24	
316	81.84	231.90	5.92	1.33	19.10	136.51	
317		235.79	6.01	1.66	18.80	136.57	
	82.00		5.79	1.50	19.04		
318 319	82.17	232.96		1.45		136.58	
	82.33	227.08	6.00		20.86 28.39	136.11 134.76	
320	82.49	174.82	5.40	1.05			
321	82.66	106.41	4.01	0.24	36.60	132.61	
322	82.82	72.62	3.54	1.16	48.05	130.19	
323	82.99	54.78	3.13	6.22	57.04	128.19	
324 225	83.15	46.60	2.30	10.43	63.28	126.64	
325	83.31	41.22	2.32	14.05	68.92	126.48	
326	83.48	40.09	3.24	16.20	65.80	128.42	
327	83.64	67.81	4.17	21.69	55.63	131.06	
328	83.81	100.62	5.08	17.69	44.47	132.79	
329	83.97	125.17	4.87	12.07	37.89	133.64	
330	84.13	138.01	4.81	8.43	32.58	133.88	
331	84.30	165.12	4.77	5.39	29.52	134.10	
332	84.46	173.32	4.80	4.22	27.80	134.23	
333	84.63	168.98	4.76	3.64	28.11	134.31	
334	84.79	162.74	4.95	2.88	29.53	134.35	
335	84.95	152.56	5.09	1.81	32.85	133.99	

:: Field input data :: (continued)							
Point ID	Depth (ft)	q _c (tsf)	fs (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
337	85.28	116.17	3.38	0.87	37.78	131.16	
338	85.45	90.59	2.98	0.81	39.69	129.28	
339	85.61	69.84	2.56	0.92	46.99	127.41	
340	85.77	50.06	2.03	1.86	52.19	125.50	
341	85.94	50.74	1.66	3.05	55.98	123.84	
342	86.10	44.85	1.56	3.48	58.20	123.18	
343	86.27	39.59	1.70	4.20	67.87	123.87	
344	86.43	32.62	2.41	5.73	73.88	125.71	
345	86.59	43.52	3.21	7.85	58.38	128.59	
346	86.76	100.28	3.81	7.65	44.15	131.16	
347	86.92	131.32	4.53	4.65	36.59	132.87	
348	87.09	135.03	4.92	4.21	35.10	133.51	
349	87.25	129.82	4.66	4.24	36.02	133.29	
350	87.41	117.03	4.28	3.33	37.51	132.37	
351	87.58	102.11	3.66	3.32	41.49	130.41	
352	87.74	64.28	2.38	2.74	48.07	127.54	
353	87.91	42.58	1.68	3.71	58.58	123.63	
354	88.07	31.64	1.13	6.64	68.17	121.05	
355	88.23	29.01	1.21	9.26	75.53	120.43	
356	88.40	28.40	1.54	11.09	79.47	123.11	
357	88.56	37.15	2.73	14.15	64.56	127.10	
358	88.73	81.16	3.90	21.82	57.82	129.84	
359	88.89	73.84	4.24	8.99	51.08	131.67	
360	89.06	88.75	4.75	11.17	49.48	132.36	
361	89.22	99.92	4.83	7.90	47.66	133.11	
362	89.38	96.50	5.31	5.33	46.52	133.28	
363	89.55	99.38	4.92	5.41	45.73	133.17	
				5.55			
364	89.71	104.01	4.55		39.94	133.01	
365	89.88	139.24	4.35	5.06	32.85	133.20	
366	90.04	177.64	4.36	4.24	24.91	133.45	
367	90.20	233.04	3.83	4.13	18.78	134.02	
368	90.37	306.33	4.22	4.67	14.71	134.60	
369	90.53	349.13	4.46	4.26	12.98	135.27	
370	90.70	349.30	4.47	4.72	12.40	135.37	
371	90.86	343.95	4.25	4.16	13.04	135.09	
372	91.02	300.33	4.17	3.77	15.11	134.85	
373	91.19	242.40	4.54	3.33	20.02	134.49	
374	91.35	160.29	4.61	2.51	27.06	134.59	
375	91.52	145.51	5.52	3.83	32.66	134.92	
376	91.68	163.57	6.03	10.94	29.99	135.66	
377	91.84	221.68	5.61	6.49	24.57	136.04	
378	92.01	263.79	5.27	6.19	20.37	136.06	
379	92.17	274.65	5.21	6.01	19.22	136.11	
380	92.34	260.39	5.45	6.10	19.34	136.52	
381	92.50	279.63	6.09	5.46	17.80	137.06	
382	92.66	355.86	5.91	6.72	15.28	137.28	
383	92.83	401.32	5.98	7.35	13.01	137.28	
384	92.99	415.26	5.85	7.60	11.91	137.28	

: Field inp	ut data ::	(continue	d)				
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	
385	93.16	420.09	5.39	6.95	10.71	137.28	
386	93.32	475.15	5.30	7.95	9.40	137.27	
387	93.48	495.04	4.83	7.58	8.45	137.09	
388	93.65	491.76	4.77	8.14	8.15	136.86	
389	93.81	485.31	4.80	7.72	8.01	136.63	
390	93.98	491.45	4.40	7.64	7.84	136.57	
391	94.14	503.70	4.61	8.07	7.67	136.65	
392	94.30	510.35	4.88	8.64	7.85	136.83	
393	94.47	490.38	4.75	7.62	8.31	136.79	
394	94.63	456.78	4.68	7.82	8.62	136.53	
395	94.80	462.14	4.54	7.09	9.09	136.51	
396	94.96	449.17	4.85	6.99	9.47	136.71	
397	95.12	441.05	5.12	6.88	10.23	137.28	
398	95.29	445.81	5.79	7.18	11.01	137.28	
399	95.45	449.08	6.58	7.63	11.80	137.28	
400	95.62	450.89	7.26	8.26	12.64	137.28	
401	95.78	446.84	7.91	8.77	13.23	137.28	
402	95.94	440.88	7.83	8.46	13.57	137.28	
403	96.11	452.67	8.22	8.78	13.65	137.28	
404	96.27	460.21	8.56	8.98	13.99	137.28	
405	96.44	436.11	8.56	7.82	14.24	137.28	
406	96.60	449.36	8.75	8.06	14.62	137.28	
407	96.77	431.57	8.51	8.42	14.20	137.28	
408	96.93	450.65	7.89	8.29	13.74	137.28	
409	97.09	446.63	7.37	8.59	13.07	137.28	
410	97.26	425.02	6.50	7.40	12.63	137.28	
411	97.42	429.22	6.07	7.43	12.71	137.28	
412	97.59	422.64	6.78	7.37	13.13	137.28	
413	97.75	423.56	7.41	7.88	14.05	137.28	
414	97.91	412.47	7.73	9.32	14.30	137.28	
415	98.08	429.89	7.63	9.48	14.72	137.28	
416	98.24	401.23	7.64	7.95	14.33	137.28	
417	98.41	424.60	7.15	8.38	14.07	137.28	
418	98.57	420.53	6.61	8.14	13.50	137.28	
419	98.73	417.48	6.79	8.94	13.40	137.28	
420	98.90	426.02	6.92	8.70	13.57	137.28	
421	99.06	422.83	7.04	8.71	13.63	137.28	
422	99.23	422.58	7.07	9.58	13.80	137.28	
423	99.39	416.01	6.98	9.46	13.63	137.28	
424	99.55	417.28	6.40	9.50	13.29	137.28	
425	99.72	419.43	6.14	9.09	12.67	137.28	
426	99.88	432.38	6.03 -260034.7	9.68	N/A	137.28	
427	100.05	435.13	1 -260034./	9.98	N/A	137.28	
428	100.21	473.18	1 -260034./	10.18	N/A	137.28	
429	100.37	481.02	1	10.19	N/A	137.28	

:: Field input data :: (continued)							
Point ID	Depth (ft)	q _c (tsf)	f _s (tsf)	u (tsf)	Fines content (%)	Unit weight (pcf)	

## Abbreviations

Depth:	Depth from free surface, at which CPT was performed (ft)
q _c :	Measured cone resistance (tsf)
f _s :	Sleeve friction resistance (tsf)
u:	Pore pressure (tsf)
Fines content:	Percentage of fines in soil (%)
Unit weight:	Bulk soil unit weight (pcf)



Project: File No.: TF Broadway, LP 21545 Description: Liquefaction Analysis (2% Exceedance in 50 Years) Boring No: 4

# LIQUEFACTION EVALUATION (Idriss & Boulanger, EERI NO 12)

#### EARTHQUAKE INFORMATION:

Earthquake Magnitude (M):	6.9
Peak Ground Horizontal Acceleration, PGA (g):	0.97
Calculated Mag.Wtg.Factor:	1.171
GROUNDWATER INFORMATION:	
Current Groundwater Level (ft):	48.0
Historically Highest Groundwater Level* (ft):	20.0
Unit Weight of Water (pcf):	62,4

ION:
8
Y
18
1

Depth to	Total Unit	Current	Liistorical	Field SPT	Depth of SPT	Fines Content	Plastic	Vetical	Effective	Fines	Stress	Cyclic Shear	Cyclic	Factor of Safety	Liquefaction
Base Layer (feet)	Weight (pef)	Water Level (feet)	Water Level (feet)	Blowcount	Blowcount (feet)	#200 Sleve (%)	(PI)	Stress over (psf)	Vert, Stress	Corrected (N1)10-es	Reduction Coeff, rd	CSR CSR	Resistance Ratio (CRR)	CRR/CSR (F.S.)	Settiment ∆S _i (inches)
]	125.8	Unsaturated	Unsaturated	11	5	0.0	()	125.8	125.8	24.2	1.00	0.633	0.351	Non-Liq.	0.00
2	125.8	Unsaturated	Unsaturated	11	5	(),()	()	251.6	251.6	24.2	1.00	0.631	0.351	Non-Liq.	0.00
3	125.8	Unsaturated	Unsiturated	11	5	0.0	0	377.4	377.4	24.2	1.00	0.629	0.351	Non-Liq.	0.00
4	125.8	Unsaturated Unsaturated	Unsaturated Unsaturated	11	5	0.0	() ()	503.2 629.0	503.2	24.2	0.99	0.627	0.351	Non-Liq. Non-Liq.	0.00
6	125.8	Unsaturated	Unsaturated	11	5	(1.0	0	754.8	629.0	23.5	0.99	0.625	0.372	Non-Liq.	0.00
7	125.8	Unsaturated	Unsaturated	11	5	0.0	0	880.6	880.6	22.0	0.98	0.620	0.300	Non-Lig.	0.00
8	129.7	Unsaturated	Unsaturated	11	5	0.0	0	1010.3	1010.3	20.7	0.98	0.618	0.276	Non-Lig.	0.00
9	129.7	Unsaturated	Unsaturated	11	5	0.0	0	1140.0	1140.0	20.8	0.98	0.616	0.275	Non-Liq.	0.00
10	129.7	Unsaturated	Unsaturated	12	10	0.0	0	1269.7	1269,7	21.7	0.97	0.613	0.287	Non-Liq.	0.00
11	129.7	Unsaturated	Unsaturated	12	10	0.0	0	1399.4	1399.4	20.7	0.97	0.610	0.266	Non-Liq.	0.00
12	129.7	Unsaturated Unsaturated	Unsaturated Unsaturated	12	10	0.0	0	1529.1	1529.1	19.8	0.96	0.608	0.249	Non-Liq. Non-Liq.	0.00
14	130.6	Unsaturated	Unsaturated	36	15	0.0	0	1790.3	1790.3	59.7	0.95	0.602	2.000	Non-Lig.	0,00
15	130.6	Unsaturated	Unsaturated	36	15	0.0	D	1920.9	1920.9	65.5	0.95	0.599	2.000	Non-Liq.	0.00
16	130.6	Unsaturated	Unsaturated	36	15	0.0	0	2051.5	2051.5	64.4	0.95	0,596	2.000	Non-Liq.	0.00
17	130.6	Unsaturated	Unsaturated	36	15	0.0	0	2182.1	2182.1	63,3	0,94	0.593	2,000	Non-Liq.	0.00
18	137.8	Unsaturated	Unsaturated	36	15	0.0	0	2319.9	2319,9	62.3	0.94	0.590	2,000	Non-Liq.	0.80
19	137.8	Unsaturated	Unsaturated	36	15	0,0	0	2457.7	2457.7 2595.5	61.4 50.4	0.93	0.587	2.000	Non-Liq. Non-Liq.	0.00
20	137.8	Unsaturated Unsaturated	Unsaturated Saturated	30	20	0.0	0	2733.3	2595.5	49.7	0.93	0.584	2.000	3.4	0.00
22	137.8	Unsaturated	Saturaled	30	20	0.0	0	2871.1	2746.3	49.1	0.92	0.603	2.000	3.3	0.00
23	137.8	Unsaturated	Saturated	30	20	0.0	0	3008.9	2821.7	48.5	0.91	0.612	2.000	3.3	0.00
24	137.8	Unsaturated	Saluraled	30	20	0,0	0	3146.7	2897.1	47.9	0.90	0.620	2.000	3.2	0.00
25	137.8	Unsaturated	Saturaled	21	25	30.6	0	3284.5	2972.5	35.6	0.90	0.627	1.300	2.1	0.00
26	137.8	Unsaturated	Saturated	21	25	30.6	0	3422.3	3047.9	35.0	0.89	0.633	1.133	1.8	0.00
27	137.8	Unsaturated Unsaturated	Saturated Saturated	21	25	30.6	0	3560.1 3696.5	3123.3	34.4	0.89	0.639	1,001	1.6	0.00
29	136.4	Unsaturated	Saturated	21	25	30.6	U ()	3832.9	3271.3	35.3	0.38	0.648	1.174	1.8	0.00
30	136.4	Unsaturated	Saturated	32	30	0.0	1)	3969.3	3345.3	50.6	0.87	0.652	1.905	2.9	0.00
31	136.4	Unsaturated	Saturated	32	30	0,0	0	4105.7	3419,3	50.2	0.87	0.656	1.882	2,9	0.00
32	1,36.4	Unsaturated	Saturated	32	30	0,0	0	4142.1	3493.3	49.8	0.86	0.659	1.860	2.8	0.00
33	126,6	Unsaturated	Saturated	32	30	0,0	0	4168.7	3557.5	49,4	0.85	0.662	1.839	2.8	0.00
34	126.6	Unsaturated	Saturated	32	30	0,0	0	4495.3	3621.7	49.0	0.85	0.665	1.820 1.801	2.7	0.00
36	120.0	Unsaturated Unsaturated	Saturaled Saturaled	32 32	35	0.0	0	4621.9 4748.5	3685.9 3750.1	48.3	0.84	0.669	1.801	2.7	0.00
37	126.6	Unsaturated	Saturated	32	35	0.0	0	4875.1	3814.3	48.0	0.83	0.670	1.764	2.6	0.00
38	128.5	Unsaturated	Saturated	23	40	73.6	Ð	5003.6	3880.4	35.2	0.83	0.672	1.052	1.6	0.00
39	128.5	Unsaturated	Saturaled	23	40	73.6	{}	5132.1	3946.5	34.8	0.82	0.673	0.965	1.4	0.00
40	128.5	Unsaturated	Saturated	23	40	73.6	0	5260.6	4012,6	34,4	0.81	0.673	0.890	1.3	0.00
41	128.5	Unsaturated	Saturated	23	-40	73.6	0	5389.1	4078,7	34.1	0.81	().674	0.825	1.2	0.00
<u>42</u> 43	128.5	Unsaturated Unsaturated	Saturated Saturated	23 13	40	73.6 88.1	{) 27	5517.6	4144.8 4206.8	33.7	0.80	0.674	0.768	Non-Liq.	0.00
44	124.4	Unsaturated	Saturated	13	45	88,1	27	5766.4	4268.8	17.9	0.79	0.674	0.188	Non-Lig.	0.00
45	124,4	Unsaturated	Saturated	13	45	88.1	27	5890.8	4330.8	17.7	0.79	0.674	0.185	Non-Liq.	0.00
46	124,4	Unsaturated	Saturated	13	45	88.1	27	6015.2	4392.8	17.6	0.78	0.673	0.183	Non-Liq.	0.00
47	124,4	Unsaturated	Saturated	13	45	88.1	27	6139.6	4454.8	17.4	0.77	0.673	0.181	Non-Liq.	0.00
48	127.1	Unsaturated	Saturated	13	45	88.1	27	6266.7	4519.5	173	0.77	0.672	0.180	Non-Liq.	0.00
49 50	127.1	Saturated	Saturated	13	45	88.1 78.9	27 10	6393.8 6520.9	4584.2 4648.9	17.2	0.76	0.671	0.179	Non-Liq 0.3	0.00
50	127.1	Saturated Saturated	Saturated Saturated	16	50	78.9	10	6520.9	4648.9	20.8	0.75	0.670	0.215	0.3	0.27
52	127.1	Saturated	Saturated	16	50	78.9	10	6775.1	4778.3	20.6	0.75	0.667	0,212	0.3	0.27
53	127.7	Saturated	Saturated	16	50	78.9	10	6902.8	4843,6	20.5	0,74	0.665	0.210	0.3	0.27
54	127.7	Saturated	Saturated	16	50	78.9	10	7030.5	4908.9	20.4	0.73	0.664	0.209	0.3	0.27
55	115.4	Saturated	Saturated	[4	55	92.2	9	7145.9	4961.9	17.9	0.73	0.662	0.183	0.3	0.10
56	115.4	Saturated	Saturated	[4	53	92.2	9	7261.3	5014,9	17.8	0.72	0.661	0.182	0.5	0.30
57	115.4	Saturated Saturated	Saturated Saturated	14	55 55	92.2 92.2	9	7376,7 7492,1	5067.9 5120.9	17.7	0.72	0.660	0.182	0.3	0.91
59	115.4	Saturated	Saturated	14	55	92.2	9	7607.5	5120.9	17.6	0.71	0.657	0.181	0.3	0.51
60	115.4	Saturated	Saturated	32	60	0.0	0	7722.9	5226.9	42.7	0.70	0.655	1.516	2.3	0.00
61	115.4	Saturated	Saturated	32	60	0.0	0	7838.3	5279.9	42.5	0.70	0.653	1.511	2.3	0.00
62	115.4	Saturated	Saturated	32	60	0.0	0	7953.7	5332.9	42.4	0.69	0.652	1.506	2.3	0.00
63	132,9	Saturated	Saturated	70	65	01	0	8086.6	5403.4	94.9	0.69	0.649	1.499	2.3	0.00
64	132.9	Saturated	Saturated	7()	65	0.0	0	8219.5	5473.9	94.6	0.68	0.647	1.492	2.3	0.00
65	132.9	Saturated	Saturated	70	65	0.0	0	8352.4	5544.4	94.4	0.68	0.644	1.485	2.3	0.00
66	132.9	Saturated	Saturated	7()	65	0.0	0	8485.3	5614.9	94.1	0.67	0.642	1.479	ر. نـ	0.00

60	132.9	Saturated	Saturated	(14)	0.5	0.0	U	8485.5	5614.9	94.1	0.67	0.642	1.479	2.3	0.00
67	132.9	Saturated	Saturated	70	65	0.0	0	8618.2	5685.4	93.9	0.67	0.639	1.472	2.3	0.00
68	134.9	Saturated	Sahirated	70	65	0.0	0	8753.1	5757.9	93.7	0.66	0.636	1.465	2.3	0.00
69	134.9	Saturated	Saturated	70	65	0.0	0	8888.0	5830.4	93,4	0.66	0.634	1,4,59	2.3	0.00
70	134.9	Saturated	Saturated	45	70	0.0	Û	9022.9	5902.9	59.9	0.65	0.631	1.452	2.3	0.00
71	134.9	Saturated	Saturated	45	70	0.0	0	9157.8	5975.4	59.8	0.65	0.628	1.446	2.3	0.00
72	134.9	Saturated	Saturated	45	70	0.0	0	9292,7	6047.9	59,6	0.65	0.626	1,439	2.3	0.00
73	136.6	Saturated	Suturated	-15	70	0.0	D	9429.3	6122.1	59.5	0.64	0.623	1.433	2.3	0.00
74	136.6	Saturated	Saturated	45	70	0.0	0	9565.9	6196.3	59.3	0.64	0.620	1.426	2.3	0.00
75	136.6	Saturated	Saturated	5()	75	0.0	1)	9702,5	6270.5	65.8	0.63	0.618	1,420	2.3	0.00
76	136.6	Saturated	Saturated	5()	75	0.0	D	9839.1	6344.7	65.6	0.63	0.615	1,413	2.3	0.00
77	136.6	Saturated	Saturated	50	75	0.0	0	9975.7	6418,9	65.4	0.63	0.613	1.407	2.3	0.00
78	139.4	Saturated	Saturated	50	75	0.0	0	10106.1	6486.9	65.3	0.62	0.610	1,401	2.3	0.00
79	130.4	Saturated	Saturated	50	.75	0.0	()	10236.5	6554.9	65.2	0.62	0.608	1.396	2.3	0.00
80	130.4	Saturated	Saturated '	37	80	0.0	D	10366.9	6622.9	48.1	0.61	0.606	1.390	2.3	0.00
81	139.4	Saturated	Saturated	37	80	0.0	Ð	10497.3	6690.9	48.0	0.61	0.603	1.384	2.3	0.00
82	130.4	Saturated	Saturated	37	80	0.0	Ð	10627.7	6758.9	47.9	0.61	0.601	1.379	2.3	0.00
83	133.4	Saturated	Saturated -	37	80	0.0	- ()	10761.1	6829.9	47.8	0.60	0.599	1.373	2.3	0.00
84	133.4	Saturated	Saturated	37	80	0,0	l I)	10894.5	6900.9	47.7	0.60	0.597	1.367	2.3	0.00
85	133.4	Saturated	Saturated	67	85	0.0	0	11027.9	6971.9	86.2	0.60	0.595	1.362	2.3	0.00
86	133.4	Saturated	Saturated	67	85	0.0	()	11161.3	7042.9	86.0	0.59	0.593	1.356	2,3	0.00
87	133.4	Saturated	Saturated	67	85	0.0	0	11294.7	7113.9	85.8	0.59	0.591	1.351	2,3	0.00
88	147.9	Saturated	Saturated	67	85	0.0	0	11442.6	7199.4	85.6	0.59	0.588	1.344	2.3	0.00
89	147,9	Saturated	Saturated	67	85	0.0	0	11590,5	7284.9	85.4	0.58	0.586	1.337	2.1	0.00
90	147.9	Saturated	Saturated	50	90	0,0	0	11738.4	7370.4	63.6	0.58	0.584	1.331	2.3	0.00
		enutre) a fille and a second				decomberation and the local states and					Total Liquefa	ction Settleme	ent, S =	2.87	inches



 
 Geolecimologies, Inc.

 Project:
 TF Broadway, LP

 File No.:
 21545
 Project: TF Broadway, LP File No.: 21545 Description: Liquefaction Analysis (10% Exceedance in 50 Years) Boring No: 4

## LIQUEFACTION EVALUATION (Idriss & Boulanger, EERI NO 12)

•

#### EARTHQUAKE INFORMATION:

6.9
0.65
1.171
48.0
20.0
62,4

BOREHOLE AND SAMPLER INFORMAT	ION:
Borehole Diameter (inches):	8
SPT Sampler with room for Liner (Y/N):	Y
LIQUEFACTION BOUNDARY:	
Plastic Index Cut Off (PI):	18
Minimum Liquefaction FS:	1,1

Depth to Base Layer	Total Unit Weight	Current Water Level	Historical Water Level	Field SPT Blowcount	Depth of SPT Blowcount	Fines Content #200 Sieve	Plastic Index	Vetleat Stress	Effective Vert, Stress	Fines Corrected	Stress Reduction	Cyclic Shear Ratio	Cyclic Resistance	Factor of Safety CRR/CSR	Liquefaction Settiment
(feet)	(pef)	(feet)	(feet)	N	(feet)	(%)	(PI)	or (psf)	σ., (psf)	(N1)60-e1	Coeff, rd	CSR	Ratio (CRR)	(F.S.)	∆S ₁ (inches)
1	125.8	Unsaturated Unsaturated	Unsaturated Unsaturated	11	<u> </u>	0.0	0	125.8	125.8	24.2	1.00	0,424	0.351	Non-Liq. Non-Liq.	00.0 00.0
3	125.8	Unsaturated	Unsaturated	11	3	(1,1)	0	377.4	377.4	24.2	1.00	0,422	0.351	Non-Liq.	0.00
4	125.8	Unsaturated	Unsaturated	11	5	(),()	()	503.2	503.2	24.2	0.99	0.420	0.351	Non-Liq.	0.00
j	125.8	Unsaturated	Unsaturated	11	5	(1,0	()	629.0	629.0	25.0	0.99	0.419	0.372	Non-Lig.	0.00
6	125.8	Unsaturated	Unsaturated	11	5	(1,0	00	754.8	754.8	23.5	0.99	0.417	0.332	Non-Lig.	0.00
7	125.8	Unsaturated	Unsaturated	11	5	0_0	0	880.6	\$80.6	22.0	0.98	0.416	0.300	Non-Lig.	0.00
8	129.7	Unsaturated	Unsaturated	11	5	0.0	0	1010,3	1010.3	20.7	0.98	0.414	0.276	Non-Liq.	0.00
9	129.7	Unsaturated	Unsaturated	11	5	0.0	0	1140.0	1140.0	20.8	0.98	0.412	0.275	Non-Liq.	0,00
10	129.7	Unsaturated Unsaturated	Unsaturated Unsaturated	12	10	0.0	00	1269.7	1269.7	21.7 20.7	0.97	0.411	0.287	Non-Liq. Non-Liq.	0.00
11	129.7	Unsaturated	Unsaturated	12	10	0.0	0	1529.1	1529.1	19.8	0.96	0,403	0,249	Non-Lig.	0.00
13	1,30.6	Unsaturated	Unsaturated	36	15	0.0	0	1659.7	1659.7	60.9	0.96	0.405	2.000	Non-Liq.	0.00
14	130.6	Unsaturated	Unsaturated	36	15	6.0	0	1790.3	1790_3	59.7	0.95	0.403	2.000	Non-Liq.	0.00
15	1,30,6	Unsaturated	Unsaturated	36	15	0.0	0	1920.9	1920.9	65.5	0.95	0.401	2.000	Non-Liq.	0.00
16	130.6	Unsaturated	Unsaturated	36	15	0.0	Ó	2051.5	20.51.5	64.4	0.95	0.399	2.000	Non-Liq.	0.00
17	1.30.6	Unsaturated	Unsaturated	36	15	0.0	0	2182,1	2182.1	63.3	0.94	0.397	2.000	Non-Liq.	0.00
18	137.8	Unsaturated	Unsaturated	36	15	0.0	0	2319.9	2319.9	62.3	0.94	0.395	2.000	Non-Liq.	0.00
19	137,8	Unsaturated	Unsaturated	36	15	0.0	0	2457.7	2457.7	61.4	0.93	0.393	2.000	Non-Liq.	0.00
20	137.8	Unsaturated	Unsaturated	30	<u>3</u> 0	0.0	0	2595.5	2595.5	50.4 49.7	0.93	0.391	2.000	Non-Liq. 5.0	0.00
21	137.8	Unsaturated	Saturated Saturated	30	20	0,0	0	2735.5	2070.9	49.7	0.92	0.398	2.000	4.9	0.00
23	137.8	Unsaturated Unsaturated	Saturated	30	<u>ريد</u> الا <u>2</u>	0,0	0	3008.9	2821.7	49.1	0.91	0.410	2.000	4.9	0.00
24	137.8	Unsaturated	Saturated	30	20	0.0	0	3146.7	2897.1	47.9	0.90	0,415	2.000	4.8	0.00
25	137.8	Unsaturated	Saturated	21	25	30.6	()	3284.5	1972.5	35.6	0.90	0.420	1.300	3,1	0.00
26	1.37.8	Unsaturated	Saturated	21	25	30.6	0	3422.3	3047.9	35.0	0.89	0.424	1.133	2,7	0.00
27	137.8	Unsaturated	Saturated	21	25	39.6	0	3560.1	3123.3	34,4	0.89	0.428	1.001	2.3	0.00
28	136.4	Unsaturated	Saturated	21	25	30.6	0	3696.5	3197.3	35.9	0.88	0.431	1.334	3.1	0.00
29	136.4	Unsaturated	Saturated	21	25	39.6	0	3832.9	3271.3	35.3 50.6	0.88	0.434	1.174	2.7	0.00
30	136.4	Unsaturated Unsaturated	Saturated Saturated	32	30	0.0	0	3969.3 4105.7	3345.3	50.6	0.87	0.437	1.906	4,4	0.00
31	136.4	Unsaturated	Saturated	32	30	0.0	0	4105.7	3493.3	49.8	0.86	0.439	1.860	43	0.00
33	126.6	Unsaturated	Saturated	32	30	0.0	0	4368.7	3557.5	49,4	0.85	0,444	1,839	4.1	0.00
34	126.6	Unsaturated	Saturated	32	30	0.0	Ð	4495.3	3621.7	49.0	0.85	0.445	1.820	4.1	0.00
35	126.6	Unsaturated	Saturated	32	35	0.0	Ø	4621.9	3685.9	48.6	0.84	0.447	1,801	4.0	00.0
36	126.6	Unsaturated	Saturated	32	35	0.0	0	4748.5	3750.1	48.3	0.84	0,448	1.782	4.0	0.00
37	126.6	Unsaturated	Saturated	32	35	0.0	0	4875.1	3814.3	48.0	0.83	0.449	1.764	3.9	0.00
38	128.5	Unsaturated	Saturated	23	40	73.6	0	5003.6	3880.4 3946.5	35.2 34.8	0.83	0.450	0.965	23	0.00
<u>39</u> 40	128.5	Unsaturated Unsaturated	Saturated Saturated	23	-40	73.6 73.6	0	5132.1 5260.6	4012.6	34.4	0.81	0.451	0.890	2.0	0.00
40	128.5	Unsaturated	Saturated	23	40	73.6	0	5389.1	4078.7	34.1	0.81	0.451	0.825	1.8	0.00
42	128.5	Unsaturated	Saturated	23	-40	73.6	0	5517.6	4144.8	33.7	0.80	0.452	0.768	1.7	0.00
43	124.4	Unsaturated	Saturated	13	45	88.1	27	5642.0	4206.8	18.1	0.80	0.452	0.190	Non-Liq.	0.00
44	124.4	Unsaturated	Saturated	13	45	85.1	27	5766.4	4268.8	17.9	0.79	0.452	0.188	Non-Liq.	0.00
45	124.4	Unsaturated	Saturated	13	45	88.1	27	5890.8	4330.8	17.7	0.79	0.451	0.185	Non-Lig.	0.00
46	124.4	Unsaturated	Saturated	13	45	88.1	27	6015.2	4392.8	17.6	0.78	0.451	0.183	Non-Liq.	0.00
47 48	124.4	Unsaturated	Saturated	13	45	<u>88.1</u> 88.1	27	6139.6 6266.7	4454.8	17.4	0.77	0.451	0.181	Non-Lig. Non-Lig.	0.00
48	127.1	Unsaturated Saturated	Saturated Saturated	13	45	88.1	27	6393.8	4519.5	17.3	0.76	0.450	0,179	Non-Lig	0.00
50	127,1	Saturated	Saturated	15	50	78.9	10	6520,9	4648.9	20.8	0.76	0.449	0.215	0.5	0.27
51	127.1	Saturated	Saturated	16	50	78,9	F()	6648.0	4713.G	20.7	0.75	0.448	0.213	0.5	41.27
52	127.1	Saturated	Saturated	16	50	78.9	10	6775.1	4778.3	20,6	0.75	0.447	D.212	0.5	0.27
53	127.7	Saturated	Saturated	16	.50	78.9	10	6902.8	4843.6	20.5	0.74	0.446	D.210	0.5	0.27
54	127.7	Saturated	Saturated	16	50	78.9	10	7030.5	4908.9	20,4	0.73	0.445	0.209	0.5	6.27
55	115.4	Saturated	Saturated	14	55	92.2	9	7145.9	4961,9	17,9	0.73	0,444	D.183	0.4	0.30
56	115,4	Saturated	Saturated	14	55	92.2	9	7261.3	5014.9	17.8	0.72	0.443	0.182	0.4	0,30
57	115.4	Saturated	Saturated	14	<u>55</u> 55	<u>92.2</u> 92.2	<u> </u>	7376.7	5067.9	17.7	0.72	0.441	0.181	0.4	0.31
58 _59	115.4	Saturated Saturated	Saturated Saturated	14	55	92.2	9	7492.1	5120.9	17.6	0.71	0.440	0.180	0.4	0,31
60	115.4	Saturated	Saturated	32	60	0.0	0	7722.9	5226.9	42.7	0,70	0.439	1.516	3.5	0.00
61	115.4	Saturated	Saturated	32	60	0.0	0	7838.3	5279.9	42,5	0.70	0.438	1.511	3.5	0.00
62	115.4	Saturated	Saturated	32	60	0.0	0	7953.7	5332.9	42.4	0.69	0.437	1.506	3.4	0.00
63	132.9	Saturated	Saturated	70	65	().()	0	\$086.6	5403.4	94,9	0.69	0.435	1.499	3.4	0.00
64	132.9	Saturated	Saturated	70	65	(),()	0	8219.5	5473.9	94,6	0.68	0.433	1.492	3.4	0.00
65	172.9	Saturated	Saturated	70	65	0.0	<u>()</u>	8352.4	<u>5544.4</u> 5614.9	94,4	0.68	0.432	1.485	3.4	0.00
66	1,72,9	Saturated Saturated	Saturated Saturated	70	65 65	0,0	() ()	8485.3 8618.2	5685.4	94.1	0.67	0.430	1.479	3.4	0.00
67 68	132.9	Saturated	Saturated	70	65	0,0	0	8518.2	5757.9	93.9	0.67	0.426	1.465	3.4	0.00
69	1.14.9	Saturated	Saturated	70	65	0,0	0	8888.0	5830.4	93.4	0.66	0.425	1.459	3.4	0.00
70	104.9	Saturated	Saturated	45	70	0.0	0	9021.9	5902.9	59.9	0.65	0.423	1.452	3.4	0.00
71	1,74,9	Saturated	Saturated	45	70	0.0	0	9157.8	5975.4	59.8	0.65	0.421	1,446	3.4	0.00
72	134.9	Saturated	Saturated	45	70	0,0	0	9292,7	6047.9	59.6	0.65	0.419	1.439	3.4	0.00
73	136.6	Saturated	Saturated	45	70	0,0	0	9429.3	6122.1	59.5	0.64	0.417	1.433	3.4	0.00
74	106.6	Saturated	Saturated	45	70	0.0	1)	9565.9	6196.3	59.3	0.64	0.416	1.420	3.4	0.00
75	136.6	Saturated	Saturated	50	75	0,0	0	9702.5 9839.1	6270.5 6344.7	65.8	0.63	0.414	1.420	3.4	0.00
76	136.6	Saturated Saturated	Saturated Saturated	59	75	0.0	0	9839.1	6418.9	65.4	0.63	0.412	1.407	3.4	0.00
78	1,30,6	Saturated	Saturated	50	75	0,0	0	10106.1	6486.9	65.3	0.62	0.409	1.401	3.4	0.00
79	130.4	Saturated	Saturated	50	75	0.0	0	10236.5	6554,9	65.2	0.62	0.407	1.396	3.4	0.00
8D	130,4	Saturated	Saturated	37	80	0.0	()	10366.9	6622.9	48.1	0.61	0.406	1.390	3.4	0.00
81	130.4	Saturated	Saturated	37	80	0.0	0	10497.3	669(1,9	48.0	0.61	0.404	1.384	3,4	0.00
82	130.4	Saturated	Saturated	37	80	0.0	0	10627.7	6758.9	47.9	0.61	0.403	1.379	3.4	0,00
83	133.4	Saturated	Saturated	37	80	0.0	()	10761.1	6829.9	47.8	0.60	0.401	1.373	3.4	0.00
84	133.4	Saturated	Saturated	37	80	0.0	0	10894.5	6900.9	47.7	0.60	0.400	1.367	3.4	0,00
85	133.4	Saturated	Saturated	67	85	0.0	0	11027.9	6971.9 7042.9	86.0	0.60	0.399	1.362	3.4	0.00
<u> </u>	133.4	Saturated Saturated	Saturated Saturated	67	85	0.0	0	11161.3	7113.9	85.8	0.59	0.397	1.350	3.4	0.00
8/	1.3.4	Saturated	Saturated	67	85	0.0	0	11442.6	7199.4	85.6	0.59	0.394	1.344	3.4	0.00
22					and the second se	0.0	0		7284.9	85.4	0.58	0.393	1.337	3.4	0.00
88 89	1.47.0	Saturated	Saturated	67	85	0.47	0	11590.5	7204.2						and the second designed of the little data and the second designed and the second
		Saturated Saturated	Saturated Saturated	67 50	85 90	0.0	0	11738.4	7370.4	63.6	0.58	0.393	1.331	3.4	0.00 Inches



 Project:
 TF Broadway LP

 File No.:
 21545

 Description:
 Liquefaction Analysis 2% Probability of Exceedance in 50 years

 Boring Number 5

#### LIQUEFACTION EVALUATION (Idriss & Boulanger, EERI NO 12)

8 Y

18 1.3

Earthquake Magnitude (M):	6.9
Peak Ground Horizontal Acceleration, PGA (g):	0.97
Calculated Mag.Wtg.Factor:	1.171
GROUNDWATER INFORMATION:	
Current Groundwater Level (ft):	45.0
Historically Highest Groundwater Level* (ft):	20.0
Unit Weight of Water (pcf):	62.4

	(here).	- OMIT
* Based on California	Geological Survey Seismic Hazard Eva	luation Report

Base Layer (feet)	Total Unit Weight (pcf)	Current Water Level (feet)	Historical Water Level (feet)	Field SPT Blowcount N	Depth of SPT Blowcount (feet)	Fines Content #200 Sieve (%)	Plastic Index (PI)	Vetical Stress σ _{ve} , (psf)	Effective Vert. Stress σ _{ve} ', (psf)	Fines Corrected (N ₁ ) _{60-ca}	Stress Reduction Coeff, r _d	Cyclic Shear Ratio CSR	Cyclic Resistance Ratio (CRR)	Factor of Safety CRR/CSR (F.S.)	Settlme ∆S₁ (inch
1	115.4	Unsaturated Unsaturated	Unsaturated Unsaturated	9	5	0.0	0	115.4 230.8	115.4 230.8	19.2	1.00	0.633	0.253	Non-Liq. Non-Liq.	0.00
3 4	115.4	Unsaturated Unsaturated	Unsaturated Unsaturated	9	5	0.0	0	346.2	346.2 461.6	19.2	1.00	0.629	0.253	Non-Liq. Non-Liq.	0.00
5	115.4 115.4	Unsaturated Unsaturated	Unsaturated Unsaturated	9	5	0.0	0	577.0 692.4	577.0 692.4	20.7 20.7	0.99 0.99	0.625	0.276	Non-Liq. Non-Liq.	0.00
7 8	115.4 115.4	Unsaturated Unsaturated	Unsaturated Unsaturated	9 9	5	0.0	0 0	807.8 923.2	807.8 923.2	20.0 18.5	0.98	0.620	0.265 0.243	Non-Liq. Non-Liq.	0.00
9 10	115.4 120.6	Unsaturated Unsaturated	Unsaturated Unsaturated	9 52	5	0.0	0	1038.6 1159.2	1038.6 1159.2	18.3 96.7	0.98 0.97	0.616 0.613	0.239 2.000	Non-Liq. Non-Liq.	0.00
11 12	120.6 120.6	Unsaturated Unsaturated	Unsaturated Unsaturated	52 52	10	0.0	0	1279.8 1400.4	1279.8 1400.4	94.2 92.0	0.97 0.96	0.610 0.608	2.000 2.000	Non-Liq. Non-Liq.	0.00
13 14	120.6 120.6	Unsaturated Unsaturated	Unsaturated Unsaturated	52 52	10	0.0	0	1521.0 1641.6	1521.0 1641.6	90.0 88.2	0.96	0.605	2.000 2.000	Non-Liq. Non-Liq.	0.00
15 16	126.7 126.7	Unsaturated Unsaturated	Unsaturated Unsaturated	54 54	15	0.0	0	1768.3 1895.0	1768.3 1895.0	100.4 98.6	0.95	0.599 0.596	2.000 2.000	Non-Liq. Non-Liq.	0.00
17 18	126.7 126.7	Unsaturated Unsaturated	Unsaturated Unsaturated	54 54	15	0.0	0	2021.7 2148.4	2021.7 2148.4	96.9 95.4	0.94 0.94	0.593 0.590	2.000 2.000	Non-Liq. Non-Liq.	0.00
19 20	126.7 105.6	Unsaturated Unsaturated	Unsaturated Unsaturated	54 100	15 20	0.0	0	2275.1 2380.7	2275.1 2380.7	94.0 172.0	0.93	0.587 0.584	2.000 2.000	Non-Liq. Non-Liq.	0.00
21 22	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	100	20 20	0.0	0	2486.3 2591.9	2423.9 2467.1	171.2 170.4	0.92	0.595 0.606	2.000 2.000	3.4 3.3	0.00
23 24	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	100	20 20	0.0	0	2697.5 2803.1	2510.3 2553.5	169.6 168.8	0.91	0.617 0.626	2.000 2.000	3.2 3.2	0.0
25 26	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	31	25 25	0.0	0	2908.7 3014.3	2596.7 2639.9	52.1 51.9	0.90	0.635	2.000 2.000	3.1	0.0
27 28	105.6	Unsaturated Unsaturated	Saturated Saturated	31	25 25	0.0	0	3119.9 3225.5	2683.1 2726.3	51.7 54.2	0.89	0.652	2.000 2.000	3.1	0.0
29 30	105.6	Unsaturated Unsaturated	Saturated Saturated	31 58	25 30	0.0	0	3331.1 3436.7	2769.5 2812.7	53.9 100.5	0.88	0.666	2.000 2.000	3.0 3.0	0.00
31 32	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	58 58	30 30	0.0	0	3542.3 3647.9	2855.9 2899.1	100.1 99.7	0.87	0.677	2.000 2.000	3.0	0.0
33 34	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	58 58	30 30	0.0	0	3753.5 3859.1	2942.3 2985.5	99.3 98.9	0.85	0.688	2.000 2.000	2.9	0.0
35	125.3 125.3	Unsaturated Unsaturated	Saturated Saturated	65 65	35 35	0.0	0	3984.4 4109.7	3048.4 3111.3	110.3 109.7	0.84	0.695	2.000 2.000	2.9	0.00
37 38	125.3	Unsaturated Unsaturated	Saturated Saturated	65 73	35 40	0.0	0	4109.7 4235.0 4361.3	3174.2 3238.1	109.7	0.83	0.700	2.000	2.9	0.0
39 40	126.3	Unsaturated Unsaturated	Saturated Saturated Saturated	73 73	40 40 40	0.0	0	4487.6	3302.0 3365.9	121.9	0.85	0.703	2.000 2.000 2.000	2.9	0.0
40 41 42	126.3	Unsaturated	Saturated	45	40 45 45	0.0	0	4613.9 4740.2 4866.5	3429.8 3493.7	74.0	0.81 0.80	0.705	2.000	2.8	0.0
43	126.3	Unsaturated Unsaturated	Saturated Saturated	45	45	0.0	0	4992.8	3557.6	73.3	0.80	0.705	1.981	2.8	0.0
44	126.3	Unsaturated Unsaturated	Saturated Saturated	45	45	0.0	0	5119.1 5245.4	3621.5 3685.4	72.9	0.79	0.705	1.969	2.8	0.0
46 47	126.3 126.3	Saturated Saturated	Saturated Saturated	45	45	0.0	0	5371.7 5498.0	3749.3 3813.2	72.3 72.0	0.78	0.704	1.945 1.934	2.8	0.0
48 49	98.3 98.3	Saturated Saturated	Saturated Saturated	45 45	45 45	0.0	0	5596.3 5694.6	3849.1 3885.0	71.8 71.6	0.77 0.76	0.704 0.705	1.927 1.921	2.7 2.7	0.0
50 51	98.3 98.3	Saturated Saturated	Saturated Saturated	35 35	50 50	0.0	0	5792.9 5891.2	3920.9 3956.8	55.6 55.4	0.76 0.75	0.705	1.914 1.908	2.7	0.0
52 53	88.6 88.6	Saturated Saturated	Saturated Saturated	35 35	50 50	0.0	0	5979.8 6068,4	3983.0 4009.2	55.3 55.2	0.75 0.74	0.706	1.903 1.899	2.7	0.0
54 55	88.6 88.6	Saturated Saturated	Saturated Saturated	35 40 ·	50 55	0.0	0	6157.0 6245.6	4035.4 4061.6	55.1 62.9	0.73	0.707	1.894 1.890	2.7	0.0
56 57	88.6 96.1	Saturated Saturated	Saturated Saturated	40	55 55	0.0	0	6334.2 6430.3	4087.8	62.8 62.7	0.72	0.707	1.885	2.7	0.0
58 59	96.1 96.1	Saturated Saturated	Saturated Saturated	40	55 55	0.0	0	6526.4 6622.5	4155.2 4188.9	62.5 62.4	0.71	0.707	1.874 1.869	2.7 2.6	0.0
60 61	96.1 96.1	Saturated Saturated	Saturated Saturated	58	60 60	0.0	0	6718.6 6814.7	4222.6	90.3	0.70	0.705	1.863	2.6	0.0
62 63	96.1 113.5	Saturated	Saturated	58 43	60 65	0.0	0	6910.8 7024.3	4290.0	89.9	0.69	0.704	1.852	2.6	0.0
64	113.5	Saturated Saturated	Saturated Saturated	43	65	0.0	0	7137.8	4392.2	66.3	0.68	0.700	1.836	2.6	0.0
65 66	113.5	Saturated Saturated	Saturated Saturated	43	65 65	0.0	0	7251.3 7364.8	4494.4	66.1 65.9	0.67	0.696	1.820	2.6	0.0
67 68	103.9 103.9	Saturated Saturated	Saturated Saturated	43	65 65	0.0	0	7468.7 7572.6	4535.9 4577.4	65.7 65.5	0.67	0.694	1.814 1.807	2.6	0.0
69 70	103.9 103.9	Saturated Saturated	Saturated Saturated	43	65 70	0.0	0	7676.5 7780.4	4618.9 4660.4	65.4 151.7	0.66	0.691 0.689	1.801 1.795	2.6	0.0
71 72	103.9	Saturated Saturated	Saturated Saturated	100	70 70	0.0	0	7988.2 8110.9	4805.8 4866.1	150.5 150.0	0.65	0.681 0.679	1.774	2.6 2.6	0.0
73 74	122.7	Saturated Saturated	Saturated Saturated	100	70 70	0.0	0	8233.6 8356.3	4926.4 4986.7	149.5 149.0	0.64	0.676	1.756	2.6	0.0
75 76	122.7 122.7	Saturated Saturated	Saturated Saturated	85 85	75 75	0.0	0	8479.0 8601.7	5047.0 5107.3	126.3 125.9	0.63	0.671	1.740	2.6	0.0
77 78	122.7	Saturated Saturated	Saturated Saturated	85 85	75 75	0.0	0	8724.4 8842.9	5167.6 5223.7	125.5 125.1	0.63	0.665	1.723	2.6	0.0
79	118.5	Saturated	Saturated	85	75	0.0	0	8961.4	5279.8	124.8	0.62	0.661	1.709	2.6	0.0
80 81	118.5 118.5	Saturated Saturated	Saturated Saturated	75	80 80	0.0	0	9079.9 9198.4	5335.9 5392.0	109.8 109.5	0.61	0.658	1.701	2.6	0.0
82 83	118.5 129.5	Saturated Saturated	Saturated Saturated	75 82	80 85	0.0	0	9316.9 9446.4	5448.1 5515.2	109.2 119.0	0.61	0.654	1.687 1.678	2.6 2.6	0.0
84 85	129.5 129.5	Saturated Saturated	Saturated Saturated	82 82	85 85	0.0	0	9575.9 9705.4	5582.3 5649.4	118.6 118.2	0.60	0.649 0.646	1.670 1.662	2.6 2.6	0.0
86	129.5	Saturated Saturated	Saturated Saturated	82 82 82	85	0.0	0	9834.9 9953.6	5716.5 5772.8	117.9	0.59	0.643	1.654	2.6	0.0
88 89	118.7	Saturated	Saturated	82 82	85	0.0	0	10072.3	5829.1	117.3	0.59 0.58	0.639	1.640	2.6	0.0
90	118.7	Saturated	Saturated	100	90	0.0	0	10309.7	5941.7	142.3	0.58	0.636	1.627	2.6	0.0
91 92	118.7	Saturated Saturated	Saturated Saturated	100	90	0.0	0	10428.4	5998.0 6054.3	142.0	0.58	0.634	1.620	2.6	0.0
93 94	118.2 118.2	Saturated Saturated	Saturated Saturated	100 100	90 90	0.0	0	10665.3 10783.5	6110.1 6165.9	141.3 140.9	0.57 0.57	0.631 0.629	1.608	2.5 2.5	0.0
95 96	118.2 118.2	Saturated Saturated	Saturated Saturated	100 100	95 95	0.0	0	10901.7 11019.9	6221.7 6277.5	140.6 140.3	0.57 0.57	0.628	1.595 1.589	2.5 2.5	0.0
97 98	129.6 129.6	Saturated Saturated	Saturated Saturated	100 100	95 95	0.0	0	11149.5 11279.1	6344.7 6411.9	139.9 139.5	0.56	0.625 0.623	1.582 1.574	2.5	0.0
99 100	129.6	Saturated Saturated	Saturated Saturated	100	95 100	0.0	0	11408.7	6479.1 6546.3	139.1	0.56	0.621	1.567	2.5 2.5	0.0
101	129.6	Saturated	Saturated	100	100	0.0	0	11667.9	6613.5	138.3	0.56	0.618	1.553	2.5	0.0
102 103	124.7 124.7	Saturated Saturated	Saturated Saturated	100	100	0.0	0	11792.6	6675.8 6738.1	138.0	0.55	0.617	1.540	2.5	0.0
104 105	124.7 124.7	Saturated Saturated	Saturated Saturated	100 100	100 105	0.0	0	12042.0 12166.7	6800.4 6862.7	137.3 137.0	0.55	0.615 0.614	1.534	2.5 2.5	0.0
106 107	124.7 124.7	Saturated Saturated	Saturated Saturated	100 100	105 105	0.0	0	12291.4 12416.1	6925.0 6987.3	136.7 136.4	0.55	0.613	1.521 1.515	2.5 2.5	0.0
108	123.8	Saturated Saturated	Saturated Saturated	100	105	0.0	0	12539.9 12663.7	7048.7 7110.1	136.0 135.7	0.55	0.612	1.509	2.5 2.5	0.0
110	123.8	Saturated	Saturated	100	110	0.0	0	12787.5	7171.5	135.4	0.54	0.611	1.497	2.4	0.0
111 112	123.8 123.8	Saturated Saturated	Saturated Saturated	100	110 110	0.0	0	13035.1	7294.3	134.8	0.54	0.611	1.485	2.4	0.0
113 114	115.7 115.7	Saturated Saturated	Saturated Saturated	100	110 110	0.0	0	13150.8 13266.5	7347.6 7400.9	134.6 134.3	0.54	0.611 0.611	1,480	2.4 2.4	0.0
115 116	115.7 115.7	Saturated Saturated	Saturated Saturated	62 62	115	0.0	0	13382.2 13497.9	7454.2 7507.5	83.1 83.0	0.54	0.612	1.470 1.465	2.4 2.4	0.0
117	115.7	Saturated	Saturated	62	115	0.0	0	13613.6	7560.8	82.8	0.54	0.613	1.460	2.4	0.0
118 119	105.0 105.0	Saturated Saturated	Saturated Saturated	62 62	115 115	0.0	0	13718.6 13823.6	7603.4 7646.0	82.6	0.54	0.615	1.453	2.4	0.0
120 121	105.0 105.0	Saturated Saturated	Saturated Saturated	100 100	120 120	0.0	0	13928.6 14033.6	7688.6 7731.2	133.0 132.8	0.54 0.54	0.616 0.618	1.449 1.445	2.3	0.0
122 123	105.0 105.0	Saturated Saturated	Saturated Saturated	100	120 120	0.0	0	14138.6 14243.6	7773.8	132.6 132.4	0.54	0.619	1.441	2.3 2.3	0.0
125	105.0	Saturated	Saturated	100	120	0.0	0	14348.6 14451.1	7859.0 7899.1	132.2 132.0	0.54	0.623	1.434	2.3	0.0



 Project:
 TF Broadway LP

 File No.:
 21545

 Description:
 Liquefaction Analysis 10% Probability of Exceedance in 50 years

 Boring Number 5

#### LIQUEFACTION EVALUATION (Idriss & Boulanger, EERI NO 12)

EARTHQUAKE INFORMATION:	
Earthquake Magnitude (M):	6.9
Peak Ground Horizontal Acceleration, PGA (g):	0.65
Calculated Mag.Wtg.Factor:	1.171
GROUNDWATER INFORMATION:	
Current Groundwater Level (ft):	45.0
Historically Highest Groundwater Level* (ft):	20.0
Unit Weight of Water (pcf):	62.4

BOREHOLE AND SAMPLER INFORMATI	ON:
Borehole Diameter (inches):	8
SPT Sampler with room for Liner (Y/N):	Y
LIQUEFACTION BOUNDARY:	
Plastic Index Cut Off (PI):	18
Minimum Liquefaction FS:	1.3

* Based on California Geological Survey Seismic Hazard Evaluation Report

Depth to Base Layer (feet)	Total Unit Weight (pcf)	Current Water Level (feet)	Historical Water Level (feet)	Field SPT Blowcount N	Depth of SPT Blowcount (feet)	Fines Content #200 Sieve (%)	Plastic Index (PI)	Vetical Stress _{vet} (psf)	Effective Vert. Stress σ _{ve} ', (psf)	Fines Corrected (N ₁ ) _{60-es}	Stress Reduction Coeff, r _d	Cyclic Shear Ratio CSR	Cyclic Resistance Ratio (CRR)	Factor of Safety CRR/CSR (F.S.)	Liquefactio Settlment ∆S ₁ (inches
1 2	115.4	Unsaturated	Unsaturated	9 9	5	0.0	0	115.4	115.4	19.2	1.00	0.424	0.253 0.253	Non-Liq.	0.00
3	115.4	Unsaturated Unsaturated	Unsaturated Unsaturated	9	5	0.0	0	230.8 346.2	230.8 346.2	19.2	1.00	0.422	0.253	Non-Liq. Non-Liq.	0.00
4 5	115.4 115.4 115.4	Unsaturated Unsaturated	Unsaturated Unsaturated	9 9 9	5	0.0	0	461.6 577.0 692.4	461.6 577.0 692.4	19.2 20.7 20.7	0.99 0.99 0.99	0.420 0.419 0.417	0.253 0.276 0.276	Non-Liq. Non-Liq.	0.00 0.00 0.00
6 7 8	115.4	Unsaturated Unsaturated	Unsaturated Unsaturated	<u>9</u> 9	5 5 5	0.0	0	807.8	807.8 923.2	20.0	0.98	0.417	0.265	Non-Liq. Non-Liq.	0.00
9	115.4	Unsaturated Unsaturated Unsaturated	Unsaturated Unsaturated Unsaturated	9	5	0.0	0	923.2 1038.6	1038.6	18.5	0.98	0.412 0.411	0.239	Non-Liq. Non-Liq.	0.00
10	120.6	Unsaturated	Unsaturated	52 52 52	10 10 10	0.0 0.0 0.0	0	1159.2 1279.8 1400.4	1159.2 1279.8 1400.4	96.7 94.2	0.97 0.97 0.96	0.409	2.000 2.000 2.000	Non-Liq. Non-Liq. Non-Liq.	0.00
12	120.6	Unsaturated Unsaturated	Unsaturated Unsaturated	52 52	10	0.0	0	1521.0	1521.0	92.0 90.0	0.96	0.405	2.000	Non-Liq.	0.00
14	120.6	Unsaturated Unsaturated	Unsaturated Unsaturated	52 54	10	0.0	0	1641.6 1768.3	1641.6 1768.3	88.2 100.4	0.95	0.403	2.000 2.000	Non-Liq. Non-Liq.	0.00
16	126.7	Unsaturated Unsaturated	Unsaturated Unsaturated	54 54	15 15	0.0	0	1895.0 2021.7	1895.0 2021.7	98.6 96.9	0.95	0.399	2.000	Non-Liq.	0.00
18	126.7	Unsaturated Unsaturated	Unsaturated Unsaturated	54 54	15	0.0	0	2148.4 2275.1	2148,4 2275,1	95.4 94.0	0.94	0.395	2.000 2.000	Non-Liq. Non-Liq.	0.00
20 21	105.6 105.6	Unsaturated Unsaturated	Unsaturated Saturated	100 100	20	0.0	0	2380.7 2486.3	2380.7 2423.9	172.0	0.93	0.391 0.399	2.000 2.000	Non-Liq. 5.0	0.00
22 23	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	100 100	20	0.0	0	2591.9 2697.5	2467.1 2510.3	170.4 169.6	0.92	0.406	2.000 2.000	4.9	0.00
24 25	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	100 31	20	0.0	0	2803.1 2908.7	2553.5 2596.7	168.8 52.1	0.90	0.420	2.000 2.000	4.8	0.00
26 27	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	31 31	25 25	0.0	0	3014.3 3119.9	2639.9 2683.1	51.9 51.7	0.89	0.431	2.000	4.6	0.00
28 29	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	31	25 25	0.0	0	3225.5 3331.1	2726.3 2769.5	54.2 53.9	0.88	0.441 0.446	2.000	4.5	0.00
30 31	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	58 58	30 30	0.0	0	3436.7 3542.3	2812.7 2855.9	100.5	0.87	0.450 0.454	2.000	4.4	0.00
32 33	105.6 105.6	Unsaturated Unsaturated	Saturated Saturated	58 58	30 30	0.0 0.0	0	3647.9 3753.5	2899.1 2942.3	99.7 99.3	0.86	0.458 0.461	2.000 2.000	4.4 4.3	0.00
34 35	105.6 125.3	Unsaturated Unsaturated	Saturated Saturated	58 65	30 35	0.0	0	3859.1 3984.4	2985.5 3048.4	98.9 110.3	0.85 0.84	0.464	2.000 2.000	4.3 4.3	0.00
36 37	125.3 125.3	Unsaturated Unsaturated	Saturated Saturated	65 65	35 35	0.0	0	4109.7 4235.0	3111.3 3174.2	109.7	0.84	0.467	2.000 2.000	4.3	0.00
38 39	126.3 126.3	Unsaturated Unsaturated	Saturated Saturated	73	40 40	0.0	0	4361.3 4487.6	3238.1 3302.0	121.9	0.83	0.470	2.000 2.000	4.3	0.00
40 41	126.3 126.3	Unsaturated Unsaturated	Saturated Saturated	73 45	40 45	0.0	0	4613.9 4740.2	3365.9 3429.8	120.6	0.81	0.472	2.000 2.000	4.2	0.00
42 43	126.3	Unsaturated Unsaturated	Saturated Saturated	45 45	45 45	0.0	0	4866.5 4992.8	3493.7 3557.6	73.6 73.3	0.80	0.473 0.473	1.994 1.981	4.2	0.00
44 45	126.3 126.3	Unsaturated Unsaturated	Saturated Saturated	45 45	45 45	0.0	0	5119.1 5245.4	3621.5 3685.4	72.9 72.6	0.79	0.473 0.472	1.969 1.957	4.2	0.00
46 47	126.3 126.3	Saturated Saturated	Saturated Saturated	45 45	45 45	0.0	0	5371.7 5498.0	3749.3 3813.2	72.3 72.0	0.78	0.472 0.472	1.945 1.934	4.1	0.00
48 49	98.3 98.3	Saturated Saturated	Saturated Saturated	45 45	45 45	0.0	0	5596.3 5694.6	3849.1 3885.0	71.8 71.6	0.77	0.472	1.927	4.1	0.00
50 51	98.3 98.3	Saturated Saturated	Saturated Saturated	35 35	50 50	0.0	0	5792.9 5891.2	3920.9 3956.8	55.6 55.4	0.76	0.473	1.914 1.908	4.1 4.0	0.00
52 53	88.6 88.6	Saturated Saturated	Saturated Saturated	35 35	50 50	0.0	0	5979.8 6068.4	3983.0 4009.2	55.3 55.2	0.75	0.473	1.903 1.899	4.0 4.0	0.00
54 55	88.6 88.6	Saturated Saturated	Saturated Saturated	35 40	50 55	0.0	0	6157.0 6245.6	4035.4 4061.6	55.1 62.9	0.73	0.474	1.894	4.0 4.0	0.00
56 57	88.6 96.1	Saturated Saturated	Saturated Saturated	40	55 55	0.0	0	6334.2 6430.3	4087.8	62.8	0.72	0.474	1.885	4.0	0.00
58	96.1 96.1	Saturated Saturated	Saturated Saturated	40	55 55	0.0	0	6526.4 6622.5	4155.2 4188.9	62.5 62.4	0.71	0.474	1.874 1.869	4.0 3.9	0.00
60 61	96.1 96.1	Saturated Saturated	Saturated Saturated	58 58	60 60	0.0	0	6718.6 6814.7	4222.6 4256.3	90.3 90.1	0.70	0.473	1.863	3.9 3.9	0.00
62 63	96.1 113.5	Saturated Saturated	Saturated Saturated	58 43	60 65	0.0	0 0	6910.8 7024.3	4290.0 4341.1	89.9 66.5	0.69	0.472	1.852	3.9 3.9	0.00
64 65	113.5	Saturated Saturated	Saturated	43	65 65	0.0	0	7137.8	4392.2 4443.3	66.3 66.1	0.68	0.469	1.836 1.828	3.9 3.9	0.00
66 67	113.5	Saturated Saturated	Saturated	43	65 65	0.0	0	7364.8	4494.4	65.9	0.67	0.466	1.820	3.9 3.9	0.00
68 69	103.9	Saturated Saturated	Saturated Saturated	43	65 65	0.0	0	7572.6 7676.5	4577.4 4618.9	65.5 65.4	0.66	0.464	1.807	3.9 3.9	0.00
70 71	103.9	Saturated Saturated	Saturated Saturated	100	70 70	0.0	0	7780.4	4660.4	151.7	0.65	0.462	1.795	3.9 3.9	0.00
72	122.7	Saturated	Saturated	100	70	0.0	0	8110.9	4866.1	150.0	0.65	0.455	1.765	3.9	0.00
73 74	122.7 122.7	Saturated Saturated	Saturated Saturated	100	70 70	0.0	0	8356.3	4986.7	149.0	0.64	0.451	1.748	3.9	0.00
75 76	122.7	Saturated Saturated	Saturated Saturated	85 85	75 75	0.0	0	8479.0 8601.7	5047.0 5107.3	126.3	0.63	0.449 0.448	1.740	3.9 3.9	0.00
77 78	122.7	Saturated Saturated	Saturated Saturated	85 85	75 75	0.0	0	8724.4 8842.9	5167.6 5223.7	125.5	0.63	0.446	1.723	3.9 3.9	0.00
79 80	118.5	Saturated Saturated	Saturated Saturated	85 75	75	0.0	0	8961.4 9079.9	5279.8 5335.9	124.8 109.8	0.62	0.443 0.441	1.709	3.9 3.9	0.00
81 82	118.5 118.5	Saturated Saturated	Saturated Saturated	75 75	80 80	0.0	0	9198.4 9316.9	5392.0 5448.1	109.5	0.61	0.440	1.694	3.9 3.8	0.00
83 84	129.5	Saturated	Saturated Saturated	82 82	85	0.0	0	9446.4	5515.2	119.0	0.60	0.436	1.678	3.8 3.8	0.00
85	129.5	Saturated	Saturated	82	85	0.0	0	9705.4	5649.4	118.2	0.60	0.433	1.662	3.8	0.00
86 87	129.5 118.7	Saturated Saturated	Saturated Saturated	82	85	0,0	0	9834.9 9953.6	5716.5	117.9	0.59	0.431	1.647	3.8	0.00
88 89	118.7 118.7	Saturated Saturated	Saturated Saturated	82	85 85	0.0	0	10072.3 10191.0	5829.1 5885.4	117.3	0.59	0.428	1.640	3.8	0.00
90 91	118.7 118.7	Saturated Saturated	Saturated Saturated	100	90 90	0.0	0	10309.7 10428.4	5941.7 5998.0	142.3 142.0	0.58	0.426	1.627	3.8	0.00
92 93	118.7 118.2	Saturated Saturated	Saturated Saturated	100	9() 9()	0.0	0	10547.1 10665.3	6054.3 6110.1	141.6 141.3	0.58	0.424	1.614	3.8 3.8	0.00
94 95	118.2 118.2	Saturated Saturated	Saturated Saturated	100	90 95	0.0	0	10783.5 10901.7	6165.9 6221.7	140.9 140.6	0.57 0.57	0.422 0.421	1,601	3.8 3.8	0.00
96 97	118.2	Saturated	Saturated	100	95 95	0.0	0	11019.9	6277.5 6344.7	140.3	0.57	0.420	1.589	3.8 3.8	0.00
98	129.6	Saturated	Saturated	100	95	0.0	0	11149.5	6411.9	139.5	0.56	0.417 0.416	1.574	3.8	0.00
99 100	129.6	Saturated Saturated	Saturated Saturated	100	95	0.0	0	11538.3	6546.3	138.7	0.56	0.415	1.560	3.8	0.00
101 102	129.6 124.7	Saturated Saturated	Saturated Saturated	100	100	0.0	0	11667.9 11792.6	6613.5 6675.8	138.3 138.0	0.56	0.414	1.553	3.7	0.00
103 104	124.7	Saturated Saturated	Saturated Saturated	100	100 100	0.0	0	11917.3 12042.0	6738.1 6800.4	137.7 137.3	0.55	0.413	1.540	3.7 3.7	0.00
105	124.7 124.7	Saturated Saturated	Saturated Saturated	100	105 105	0.0	0	12166,7 12291,4	6862.7 6925.0	137.0 136.7	0.55	0.412	1.527	3.7 3.7	0.00
107	124.7	Saturated Saturated	Saturated	100	105	0.0	0	12416.1	6987.3 7048.7	136.4 136.0	0.55	0.411	1.515	3.7 3.7	0.00
109	123.8	Saturated	Saturated	100	105	0.0	0	12663.7	7110.1	135.7	0.54	0.410	1.503	3.7	0.00
110 111	123.8 123.8	Saturated Saturated	Saturated Saturated	100	110	0.0	0	12787.5	7171.5	135.1	0.54	0.409	1,491	3.6	0.00
112 113	123.8 115.7	Saturated Saturated	Saturated Saturated	100	110 110	0.0	0	13035.1 13150.8	7294.3 7347.6	134.8 134.6	0.54	0.409	1.485 1.480	3.6 3.6	0.00
114	115.7	Saturated Saturated	Saturated Saturated	100	110 115	0.0	0	13266.5 13382.2	7400.9 7454.2	134.3 83.1	0.54	0.410	1.475 1.470	3.6	0.00
116	115.7	Saturated	Saturated	62	115	0.0	0	13497.9	7507.5	83.0	0.54	0,410	1.465	3.6 3.6	0.00
117 118	115.7 105.0	Saturated Saturated	Saturated Saturated	62 62	115	0.0	0	13718.6	7603.4	82.7	0.54	0.411	1.456	3.5	0.00
119 120	105.0 105.0	Saturated Saturated	Saturated Saturated	62 100	115 120	0.0	0	13823.6 13928.6	7646.0 7688.6	82.6 133.0	0.54	0.412	1.453	3.5	0.00
121 122	105.0 105.0	Saturated Saturated	Saturated Saturated	100 100	120 120	0.0	0	14033.6 14138.6	7731.2	132.8 132.6	0.54	0.414	1.445	3.5 3.5	0.00 0.00
123	105.0	Saturated	Saturated	100	120	0.0	0	14243.6 14348.6	7816.4 7859.0	132.4	0.54	0.416	1.437 1.434	3.5 3.4	0.00
124	105.0	Saturated Saturated	Saturated Saturated	100	120	0.0	0	14348.0	7839.0	132.2	0.54	0.419	1.430	3.4	0.00

TF Broadway LP Project: File No.: 21545 Description: Liquefaction Analysis 10% Probability of Exceedance in 50 years Boring Number 6

#### LIQUEFACTION EVALUATION (Idriss & Boulanger, EERI NO 12)

#### EARTHQUAKE INFORMATION:

119.1

Saturated

Saturated

63

Earthquake Magnitude (M):	6.9
Peak Ground Horizontal Acceleration, PGA (g):	0.65
Calculated Mag.Wtg.Factor:	1.171
GROUNDWATER INFORMATION:	
Current Groundwater Level (ft):	45.0
Historically Highest Groundwater Level* (ft):	20.0
Unit Weight of Water (pcf):	62.4

* Based on California Geological Survey Seismic Hazard Evaluation Report

BOREHOLE AND SAMPLER INFORMAT	ION:
Borehole Diameter (inches):	8
SPT Sampler with room for Liner (Y/N):	Y
LIQUEFACTION BOUNDARY:	
Plastic Index Cut Off (PI):	18
Minimum Liquefaction FS:	1.3

Depth to	Total Unit	Current	Historical	Field SPT	Depth of SPT	Fines Content	Plastic	Vetical	Effective	Fines	Stress	Cyclic Shear	Cyclic	Factor of Safety	Liquefaction
Base Layer	Weight	Water Level	Water Level	Blowcount	Blowcount	#200 Sieve	Index	Stress	Vert. Stress	Corrected	Reduction	Ratio	Resistance	CRR/CSR	Settlment
(feet)	(pcf)	(feet)	(feet)	N	(feet)	(%)	(PI)	σ _{ve} , (psf)	σ _{vc} ', (psf)	(N1)60-cs	Coeff, r _d	CSR	Ratio (CRR)	(F.S.)	$\Delta S_i$ (inches)
1	105.3	Unsaturated	Unsaturated	15	5	0.0	0	105.3	105.3	35.1	1.00	0.424	1.443	Non-Liq.	0.00
2	105.3	Unsaturated	Unsaturated	15	5	0.0	0	210.6	210.6	35.1	1.00	0.423	1.443	Non-Liq.	0.00
3	105.3	Unsaturated	Unsaturated	15	5	0.0	0	315.9	315.9	35.1	1.00	0.422	1.443	Non-Liq.	0.00
4	81.5	Unsaturated	Unsaturated	9	5	0.0	0	397.4	397.4	19.2	0.99	0.420	0.253	Non-Liq.	0.00
5	81.5	Unsaturated	Unsaturated	9	5	0.0	0	478.9	478.9	20.7	0.99	0.419	0.276	Non-Liq.	0.00
6	104.9	Unsaturated	Unsaturated	5	5	0.0	0	583.8	583.8	10.8	0.99	0.417	0.159	Non-Liq.	0.00
7	104.9	Unsaturated	Unsaturated	5	5	0.0	0	688.7	688.7	10.8	0.98	0.416	0.159	Non-Liq.	0.00
8	117.6	Unsaturated	Unsaturated	100	5	0.0	0	806.3	806.3	192.5	0.98	0.414	2.000	Non-Liq.	0.00
9 10	117.6	Unsaturated	Unsaturated	100	5	0.0	0	923.9	923.9	197.4	0.98	0.412	2.000	Non-Liq.	0.00
10	117.6	Unsaturated	Unsaturated	100	10	0.0	0	1041.5	1041.5	191.3	0.97	0.411	2.000	Non-Liq.	0.00
11	117.6	Unsaturated Unsaturated	Unsaturated Unsaturated	100	10	0.0	0	1159.1	1159.1	185.9	0.97	0.409	2.000	Non-Liq.	0.00
12	111.3	Unsaturated	Unsaturated	100	10	0.0	0	1270.4 1381.7	1270.4 1381.7	181.5 177.5	0.96	0.407	2.000	Non-Liq.	0.00
14	111.3	Unsaturated	Unsaturated	100	10	0.0	0	1493.0	1381.7	174.0	0.96	0.403	2.000	Non-Liq. Non-Liq.	0.00
15	111.3	Unsaturated	Unsaturated	100	15	0.0	0	1604.3	1604.3	190.8	0.95	0.403	2.000	Non-Liq.	0.00
16	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1684.5	1684.5	188.4	0.95	0.399	2.000	Non-Liq.	0.00
17	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1764.7	1764.7	186.1	0.94	0.397	2.000	Non-Liq.	0.00
18	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1844.9	1844.9	183.9	0.94	0.395	2.000	Non-Liq.	0.00
19	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1925.1	1925.1	181.9	0.93	0.393	2.000	Non-Liq.	0.00
20	95.6	Unsaturated	Unsaturated	74	20	0.0	0	2020.7	2020.7	132.9	0.93	0.391	2.000	Non-Liq.	0.00
21	95.6	Unsaturated	Saturated	74	20	0.0	0	2116.3	2053.9	132.3	0.92	0.401	2.000	5.0	0.00
22	95.6	Unsaturated	Saturated	74	20	0.0	0	2211.9	2087.1	131.7	0.92	0.410	2.000	4.9	0.00
23	95.6	Unsaturated	Saturated	74	20	0.0	0	2307.5	2120.3	131.2	0.91	0.419	2.000	4.8	0.00
24	95.6	Unsaturated	Saturated	74	20	0.0	0	2403.1	2153.5	130.7	0.90	0.427	2.000	4.7	0.00
25	95.6	Unsaturated	Saturated	25	25	0.0	0	2498.7	2186.7	44.0	0.90	0.434	2.000	4.6	0.00
26	110.0	Unsaturated	Saturated	25	25	0.0	0	2608.7	2234.3	43.7	0.89	0.441	2.000	4.5	0.00
27	110.0	Unsaturated	Saturated	55	30	0.0	0	2718.7	2281.9	95.6	0.89	0.447	2.000	4.5	0.00
28 29	110.0	Unsaturated	Saturated	55	30	0.0	0	2828.7	2329.5	100.1	0.88	0.453	2.000	4.4	0.00
30	110.0	Unsaturated	Saturated	55	30	0.0	0	2938.7	2377.1	99.6	0.88	0.458	2.000	4.4	0.00
31	100.8	Unsaturated Unsaturated	Saturated Saturated	55	30 35	0.0 80.2	0 23	3039.5 3140.3	2415.5 2453.9	99.2 36.0	0.87	0.464	2.000	4.3 Non-Liq.	0.00
32	100.8	Unsaturated	Saturated	18	35	80.2	23	3140.5	2453.9	35.8	0.87	0.408	1.551	Non-Liq.	0.00
33	100.8	Unsaturated	Saturated	18	35	80.2	23	3341.9	2530.7	35.6	0.85	0.473	1.404	Non-Liq.	0.00
34	91.4	Unsaturated	Saturated	18	35	80.2	23	3433.3	2559.7	35.5	0.85	0.481	1.355	Non-Liq.	0.00
35	91.4	Unsaturated	Saturated	18	35	80.2	23	3524.7	2588.7	35.3	0.84	0.485	1.309	Non-Liq.	0.00
36	91.4	Unsaturated	Saturated	15	35	70.7	19	3616.1	2617.7	29.2	0.84	0.489	0.494	Non-Liq.	0.00
37	91.4	Unsaturated	Saturated	15	35	70.7	19	3707.5	2646.7	29.1	0.83	0.492	0.486	Non-Liq.	0.00
38	97.1	Unsaturated	Saturated	15	35	70.7	19	3804.6	2681.4	29.0	0.83	0.495	0.476	Non-Liq.	0.00
39	97.1	Unsaturated	Saturated	28	40	70.7	17	3901.7	2716.1	54.5	0.82	0.498	2.000	4.0	0.00
40	97.1	Unsaturated	Saturated	28	40	83.0	17	3998.8	2750.8	54.3	0.81	0.500	2.000	4.0	0.00
41	97.1	Unsaturated	Saturated	28	40	83.0	17	4095.9	2785.5	54.2	0.81	0.502	2.000	4.0	0.00
42	106.3	Unsaturated	Saturated	28	40	83.0	17	4202.2	2829.4	54.0	0.80	0.504	2.000	4.0	0.00
43	106.3	Unsaturated	Saturated	28	40	83.0	17	4308.5	2873.3	53.8	0.80	0.505	2.000	4.0	0.00
44	106.3	Unsaturated	Saturated	28	40	83.0	17	4414.8	2917.2	53.6	0.79	0.506	2.000	4.0	0.00
45	106.3	Unsaturated	Saturated	40	45	66.5	5	4521.1	2961.1	74.0	0.79	0.507	2.000	3.9	0.00
46	106.3	Saturated	Saturated	40	45	66.5	5	4627.4	3005.0	73.7	0.78	0.507	2.000	3.9	0.00
47	93.5	Saturated	Saturated	40	45	66.5	5	4720.9	3036.1	73.5	0.77	0.509	2.000	3.9	0.00
48	93.5	Saturated	Saturated	40	45	66.5	5	4814.4	3067.2	73.3	0.77	0.510	2.000	3.9	0.00
49 50	93.5 93.5	Saturated	Saturated	40	45	66.5	5	4907.9	3098.3	73.1	0.76	0.511	2.000	3.9 Non Lia	0.00
50	93.5	Saturated Saturated	Saturated Saturated	20 20	50 50	89.7 89.7	26	5001.4 5094.9	3129.4 3160.5	36.9 36.8	0.76	0.511 0.512	1.775	Non-Liq. Non-Liq.	0.00
52	120.0	Saturated	Saturated	20	50	89.7	26	5094.9	3160.5	36.8	0.75	0.512	1.715	Non-Liq.	0.00
53	120.0	Saturated	Saturated	47	55	0.0	0	5334.9	3218.1	78.2	0.73	0.511	2.000	3.9	0.00
54	120.0	Saturated	Saturated	47	55	0.0	0	5454.9	3333.3	77.9	0.74	0.510	2.000	3.9	0.00
55	120.0	Saturated	Saturated	47	55	0.0	0	5574.9	3390.9	77.5	0.73	0.507	2.000	3.9	0.00
56	120.0	Saturated	Saturated	47	55	0.0	0	5694.9	3448.5	77.2	0.73	0.507	2.000	4.0	0.00
57	119.1	Saturated	Saturated	47	55	0.0	0	5814.0	3505.2	76.8	0.72	0.503	1.992	4.0	0.00
58	119.1	Saturated	Saturated	47	55	0.0	0	5933.1	3561.9	76.5	0.71	0.502	1.992	3.9	0.00
59	119.1	Saturated	Saturated	47	55	0.0	0	6052.2	3618.6	76.2	0.71	0.501	1.970	3.9	0.00
60	119.1	Saturated	Saturated	53	60	0.0	0	6171.3	3675.3	85.6	0.70	0.499	1.959	3.9	0.00
61	119.1	Saturated	Saturated	53	60	0.0	0	6290.4	3732.0	85.2	0.70	0.497	1.948	3.9	0.00
62	119.1	Saturated	Saturated	53	60	0.0	0	6409.5	3788.7	84.9	0.69	0.495	1.938	3.9	0.00
														2 8 8 8	

			1								Total Liquefa	action Settleme	nt, S =	0.00	) inches
75	119.1	Saturated	Saturated	61	75	0.0	0	8076.9	4644.9	92.6	0.63	0.465	1.797	3.9	0.00
74	119.1	Saturated	Saturated	63	70	0.0	0	7957.8	4588.2	96.0	0.64	0.467	1.806	3.9	0.00
73	119.1	Saturated	Saturated	63	70	0.0	0	7838.7	4531.5	96.3	0.64	0.469	1.814	3.9	0.00
72	119.1	Saturated	Saturated	63	70 .	0.0	0	7719.6	4474.8	96.6	0.65	0.471	1.823	3.9	· 0.00
71	119.1	Saturated	Saturated	63	70	0.0	0	7600.5	4418.1	96.9	0.65	0.473	1.832	3.9	0.00
70	119.1	Saturated	Saturated	63	70	0.0	0	7362.3	4242.3	98.0	0.65	0.480	1.860	3.9	0.00
69	119.1	Saturated	Saturated	49	65	0.0	0	7243.2	4185.6	76.5	0.66	0.482	1.869	3.9	0.00
68	119.1	Saturated	Saturated	49	65	0.0	0	7124.1	4128.9	76.7	0.66	0.484	1.879	3.9	0.00
67	119.1	Saturated	Saturated	49	65	0.0	0	7005.0	4072.2	77.0	0.67	0.486	1.888	3.9	0.00
66	119.1	Saturated	Saturated	49	65	0.0	0	6885.9	4015.5	77.3	0.67	0.488	1.898	3.9	0.00
65	119.1	Saturated	Saturated	49	65	0.0	0	6766.8	3958.8	77.6	0.68	0.490	1.908	3.9	0.00
64	119.1	Saturated	Saturated	53	60	0.0	0	6647.7	3902.1	84.2	0.68	0.492	1.918	3.9	0.00

0

6528.6

3845.4

84.6

0.69

60

53

0.0

0.493

1.928

3.9

0.00

 Project:
 TF Broadway LP

 File No.:
 21545

 Description:
 Liquefaction Analysis 2% Probability of Exceedance in 50 years

 Boring Number 6

# LIQUEFACTION EVALUATION (Idriss & Boulanger, EERI NO 12)

#### EARTHQUAKE INFORMATION:

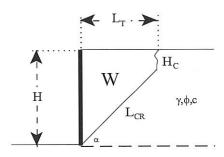
6.9
0.97
1.171
45.0
20.0
62.4

* Based on California Geological Survey Seismic Hazard Evaluation Report

BOREHOLE AND SAMPLER INFORMATION:

Borehole Diameter (inches):	8
SPT Sampler with room for Liner (Y/N):	Y
LIQUEFACTION BOUNDARY:	
Plastic Index Cut Off (PI):	18
Minimum Liquefaction FS:	1.3

Depth to Base Layer (feet)	Total Unit Weight (pcf)	Current Water Level (feet)	Historical Water Level (feet)	Field SPT Blowcount N	Depth of SPT Blowcount (feet)	Fines Content #200 Sieve (%)	Plastic Index (PI)	Vetical Stress σ _{ve} , (psf)	Effective Vert. Stress σ _{ve} ', (psf)	Fines Corrected (N1)60-cs	Stress Reduction Coeff, r _d	Cyclic Shear Ratio CSR	Cyclic Resistance Ratio (CRR)	Factor of Safety CRR/CSR (F.S.)	Liquefactio SettIment ΔS _I (inches
1	105.3	Unsaturated	Unsaturated	15	5	0.0	0	105.3	105.3	35.1	1.00	0.633	1.443	Non-Liq.	0.00
2	105.3	Unsaturated	Unsaturated	15	5	0.0	0	210.6	210.6	35.1	1.00	0.631	1.443	Non-Liq.	0.00
3	105.3	Unsaturated	Unsaturated	15	5	0.0	0	315.9	315.9	35.1	1.00	0.629	1.443	Non-Liq.	0.00
4	81.5	Unsaturated	Unsaturated	9	5	0.0	0	397.4	397.4	19.2	0.99	0.627	0.253	Non-Liq.	0.00
5	81.5	Unsaturated	Unsaturated	9	5	0.0	0	478.9	478.9	20.7	0.99	0.625	0.276	Non-Liq.	0.00
6	104.9	Unsaturated	Unsaturated	5	5	0.0	0	583.8	583.8	10.8	0.99	0.623	0.159	Non-Liq.	0.00
7	104.9	Unsaturated	Unsaturated	5	5	0.0	0	688.7	688.7	10.8	0.98	0.620	0.159	Non-Liq.	0.00
8	117.6	Unsaturated	Unsaturated	100	5	0.0	0	806.3	806.3	192.5	0.98	0.618	2.000	Non-Liq.	0.00
9 10	117.6	Unsaturated	Unsaturated	100	5	0.0	0	923.9	923.9	197.4	0.98	0.616	2.000	Non-Liq.	0.00
10	117.6	Unsaturated Unsaturated	Unsaturated Unsaturated	100	10	0.0	0	1041.5 1159.1	1041.5	191.3 185.9	0.97	0.613	2.000	Non-Liq. Non-Liq.	0.00
12	117.0	Unsaturated	Unsaturated	100	10	0.0	0	1270.4	1270.4	185.9	0.97	0.608	2.000	Non-Liq.	0.00
13	111.3	Unsaturated	Unsaturated	100	10	0.0	0	1381.7	1381.7	177.5	0.96	0.605	2.000	Non-Liq.	0.00
14	111.3	Unsaturated	Unsaturated	100	10	0.0	0	1493.0	1493.0	174.0	0.95	0.602	2.000	Non-Liq.	0.00
15	111.3	Unsaturated	Unsaturated	100	15	0.0	0	1604.3	1604.3	190.8	0.95	0.599	2.000	Non-Liq.	0.00
16	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1684.5	1684.5	188.4	0.95	0.596	2.000	Non-Liq.	0.00
17	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1764.7	1764.7	186.1	0.94	0.593	2.000	Non-Liq.	0.00
18	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1844.9	1844.9	183.9	0.94	0.590	2.000	Non-Liq.	0.00
19	80.2	Unsaturated	Unsaturated	100	15	0.0	0	1925.1	1925.1	181.9	0.93	0.587	2.000	Non-Liq.	0.00
20	95.6	Unsaturated	Unsaturated	74	20	0.0	0	2020.7	2020.7	132.9	0.93	0.584	2.000	Non-Liq.	0.00
21	95.6	Unsaturated	Saturated	74	20	0.0	0	2116.3	2053.9	132.3	0.92	0.598	2.000	3.3	0.00
22	95.6	Unsaturated	Saturated	74	20	0.0	0	2211.9	2087.1	131.7	0.92	0.612	2.000	3.3	0.00
23	95.6	Unsaturated	Saturated	74	20	0.0	0	2307.5	2120.3	131.2	0.91	0.625	2.000	3.2	0.00
24	95.6	Unsaturated	Saturated	74	20	0.0	0	2403.1	2153.5	130.7	0.90	0.637	2.000	3.1	0.00
25	95.6	Unsaturated	Saturated	25	25	0.0	0	2498.7	2186.7	44.0	0.90	0.648	2.000	3.1	0.00
26	110.0	Unsaturated	Saturated	25	25	0.0	0	2608.7	2234.3	43.7	0.89	0.658	2.000	3.0	0.00
27	110.0	Unsaturated	Saturated	55	30	0.0	0	2718.7	2281.9	95.6	0.89	0.668	2.000	3.0	0.00
28	110.0	Unsaturated	Saturated	55	30	0.0	0	2828.7	2329.5	100.1	0.88	0.676	2.000	3.0	0.00
29	110.0	Unsaturated	Saturated	55	30	0.0	0	2938.7	2377.1	99.6	0.88	0.684	2.000	2.9	0.00
30	100.8	Unsaturated	Saturated	55	30	0.0	0	3039.5	2415.5	99.2	0.87	0.692	2.000	2.9	0.00
31	100.8	Unsaturated	Saturated	18	35	80.2	23	3140.3	2453.9	36.0	0.87	0.699	1.551	Non-Liq.	0.00
32	100.8	Unsaturated	Saturated	18	35	80.2	23	3241.1	2492.3	35.8	0.86	0.706	1.474	Non-Liq.	0.00
33	100.8	Unsaturated	Saturated	18	35	80.2	23	3341.9	2530.7	35.6	0.85	0.712	1.404	Non-Liq.	0.00
34	91.4	Unsaturated	Saturated	18	35	80.2	23	3433.3	2559.7	35.5	0.85	0.718	1.355	Non-Liq.	0.00
35	91.4	Unsaturated	Saturated	18	35	80.2	23	3524.7 3616.1	2588.7 2617.7	35.3 29.2	0.84	0.724 0.730	1.309 0.494	Non-Liq. Non-Liq.	0.00
30	91.4	Unsaturated	Saturated	15		70.7	19	3707.5	2646.7	29.2	0.84	0.735	0.494	Non-Liq.	0.00
38	97.1	Unsaturated Unsaturated	Saturated Saturated	15	35	70.7	19	3804.6	2681.4	29.1	0.83	0.739	0.480	Non-Liq.	0.00
39	97.1	Unsaturated	Saturated	28	40	70.7	19	3901.7	2716.1	54.5	0.83	0.739	2.000	2.7	0.00
40	97.1	Unsaturated	Saturated	28	40	83.0	17	3998.8	2750.8	54.3	0.82	0.743	2.000	2.7	0.00
40	97.1	Unsaturated	Saturated	28	40	83.0	17	4095.9	2785.5	54.2	0.81	0.750	2.000	2.7	0.00
42	106.3	Unsaturated	Saturated	28	40	83.0	17	4202.2	2829.4	54.0	0.80	0.752	2.000	2.7	0.00
43	106.3	Unsaturated	Saturated	28	40	83.0	17	4308.5	2873.3	53.8	0.80	0.754	2.000	2.7	0.00
44	106.3	Unsaturated	Saturated	28	40	83.0	17	4414.8	2917.2	53.6	0.79	0.755	2.000	2.6	0.00
45	106.3	Unsaturated	Saturated	40	45	66.5	5	4521.1	2961.1	74.0	0.79	0.756	2.000	2.6	0.00
46	106.3	Saturated	Saturated	40	45	66.5	5	4627.4	3005.0	73.7	0.78	0.757	2.000	2.6	0.00
47	93.5	Saturated	Saturated	40	45	66.5	5	4720.9	3036.1	73.5	0.77	0.759	2.000	2.6	0.00
48	93.5	Saturated	Saturated	40	45	66.5	5	4814.4	3067.2	73.3	0.77	0.761	2.000	2.6	0.00
49	93.5	Saturated	Saturated	40	45	66.5	5	4907.9	3098.3	73.1	0.76	0.762	2.000	2.6	0.00
50	93.5	Saturated	Saturated	20	50	89.7	26	5001.4	3129.4	36.9	0.76	0.763	1.775	Non-Liq.	0.00
51	93.5	Saturated	Saturated	20	50	89.7	26	5094.9	3160.5	36.8	0.75	0.764	1.715	Non-Liq.	0.00
52	120.0	Saturated	Saturated	20	50	89.7	26	5214.9	3218.1	36.6	0.75	0.762	1.613	Non-Liq.	0.00
53	120.0	Saturated	Saturated	47	55	0.0	0	5334.9	3275.7	78.2	0.74	0.760	2.000	2.6	0.00
54	120.0	Saturated	Saturated	47	55	0.0	0	5454.9	3333.3	77.9	0.73	0.758	2.000	2.6	0.00
55	120.0	Saturated	Saturated	47	55	0.0	0	5574.9	3390.9	77.5	0.73	0.756	2.000	2.6	0.00
56	120.0	Saturated	Saturated	47	55	0.0	0	5694.9	3448.5	77.2	0.72	0.754	2.000	2.7	0.00
57	119.1	Saturated	Saturated	47	55	0.0	0	5814.0	3505.2	76.8	. 0.72	0.752	1.992	2.6	0.00
58	119.1	Saturated	Saturated	47	55	0.0	0	5933.1	3561.9	76.5	0.71	0.749	1.981	2.6	0.00
59	119.1	Saturated	Saturated	47	55	0.0	0	6052.2	3618.6	76.2	0.71	0.747	1.970	2.6	0.00
60	119.1	Saturated	Saturated	53	60	0.0	0	6171.3	3675.3	85.6	0.70	0.744	1.959	2.6	0.00
61	119.1	Saturated	Saturated	53	60	0.0	0	6290.4	3732.0	85.2	0.70	0.742	1.948	2.6	0.00
62	119.1	Saturated	Saturated	53	60	0.0	0	6409.5	3788.7	84.9	0.69	0.739	1.938	2.6	0.00
63	119.1	Saturated	Saturated	53	60	0.0	0	6528.6	3845.4	84.6	0.69	0.736	1.928	2.6	0.00
64	119.1	Saturated	Saturated	53	60	0.0	0	6647.7	3902.1	84.2	0.68	0.734	1.918	2.6	0.00
65	119.1	Saturated	Saturated	49	65	0.0	0	6766.8	3958.8	77.6	0.68	0.731	1.908	2.6	0.00
66	119.1	Saturated	Saturated	49	65	0.0	0	6885.9	4015.5	77.3	0.67	0.728	1.898	2.6	0.00
67	119.1	Saturated	Saturated	49	65	0.0	0	7005.0	4072.2	77.0	0.67	0.725	1.888	2.6	
68	119.1	Saturated	Saturated	49	65	0.0	0	7124.1	4128.9	76.7	0.66	0.722	1.879	2.6	0.00
69	119.1	Saturated	Saturated	49	65	0.0	0	7243.2	4185.6	76.5	0.66	0.719	1.869	2.6	0.00
70	119.1	Saturated	Saturated	63	70	0.0	0	7362.3	4242.3	98.0	0.65	0.716	1.860	2.6	0.00
71	119.1	Saturated	Saturated	63	70	0.0	0	7600.5	4418.1	96.9	0.65	0.705	1.832	2.6	0.00
72	119.1	Saturated	Saturated	63	70	0.0	0	7719.6	4474.8	96.6	0.65	0.703	1.823	2.6	2007-02020
73	119.1	Saturated	Saturated	63	70	0.0	0	7838.7	4531.5	96.3	0.64	0.700	1.814	2.6	0.00
74	119.1	Saturated	Saturated	63	70	0.0	0	7957.8	4588.2	96.0	0.64	0.697	1.806	2.6	0.00
	119.1	Saturated	Saturated	61	75	0.0	0	8076.9	4644.9	92.6	0.63	0.694	1.797	2.6	0.00






Project:TF Broadway, LPFile No.:21545Description: Cantilever Retaining Walls (Up to 10 feet)

# Retaining Wall Design with Level Backfill (Vector Analysis)

Input:		
Retaining Wall Height	(H)	10.00 feet
Unit Weight of Retained Soils	(γ)	125.0 pcf
Friction Angle of Retained Soils	(φ)	40.0 degrees
Cohesion of Retained Soils	(c)	85.0 psf
Factor of Safety	(FS)	1.50
Factored Parameters:	$(\phi_{FS})$	29.2 degrees
	(c _{FS} )	56.7 psf



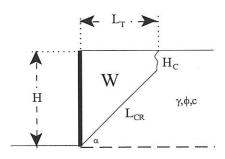
Failure	Height of	Area of	Weight of	Length of			Active	Ţ
Angle	Tension Crack	Wedge	Wedge	Failure Plane			Pressure	
(α)	(H _C )	(A)	(W)	(L _{CR} )	а	ь	(P _A )	D
degrees	feet	feet ²	lbs/lineal foot	feet	lbs/lineal foot	lbs/lineal foot	lbs/lineal foot	P _A
45	2.1	48	5985.3	11.2	2042.9	3942.4	1113.9	
46	2.0	46	5800.6	11.2	1911.8	3888.8	1172.4	
47	1.9	45	5617.8	11.1	1793.9	3823.9	1226.0	
48	1.8	44	5437.6	11.0	1687.6	3750.0	1275.0	b
49	1.8	42	5260.5	10.9	1591.5	3669.0	1319.3	
50	1.7	41	5086.5	10.8	1504.1	3582.4	1359.2	
51	1.7	39	4915.8	10.7	1424.6	3491.2	1394.8	
52	1.7	38	4748.5	10.6	1352.0	3396.5	1426.2	
53	1.6	37	4584.5	10.5	1285.4	3299.1	1453.5	
54	1.6	35	4423.8	10.4	1224.3	3199.4	1476.8	VV N
55	1.6	34	4266.2	10.3	1168.1	3098.1	1496.2	1.
56	1.6	33	4111.7	10.2	1116.1	2995.6	1511.7	
57	1.6	32	3960.2	10.1	1068.1	2892.1	1523.4	a
58	1.6	30	3811.5	10.0	1023.5	2788.0	1531.3	a
59	1.5	29	3665.5	9.9	982.0	2683.5	1535.4	
60	1.5	28	3522.2	9.8	943.4	2578.7	1535.9	
61	1.5	27	3381.2	9.7	907.3	2473.9	1532.5	
62	1.6	26	3242.7	9.6	873.6	2369.1	1525.5	V C _{FS} L _{CR}
63	1.6	25	3106.3	9.5	841.8	2264.4	1514.6	
64	1.6	24	2972.0	9.4	812.0	2160.0	1500.0	
65	1.6	23	2839.7	9.3	783.9	2055.8	1481.5	Design Equations (Vector Analysis):
66	1.6	22	2709.2	9.2	757.3	1951.9	1459.0	$a = c_{FS} L_{CR} \sin(90 + \phi_{FS}) / \sin(\alpha - \phi_{FS})$
67	1.7	21	2580.5	9.1	732.1	1848.4	1432.6	b = W-a
68	1.7	20	2453.4	9.0	708.0	1745.3	1402.1	$P_A = b * tan(\alpha - \phi_{FS})$
69	1.7	19	2327.7	8.9	685.1	1642.6	1367.5	$EFP = 2*P_A/H^2$
70	1.8	18	2203.5	8.8	663.1	1540.4	1328.6	

Maximum Active Pressure Resultant

 $P_{A, max}$ 

1535.9 lbs/lineal foot

Equivalent Fluid Pressure (per lineal foot of wall)


$EFP = 2*P_A/H^2$	
EFP	30.7 pcf
Design Wall for an Equivalent Fluid Pressure:	31 pcf



Project:TF Broadway, LPFile No.:21545Description: Cantilever Retaining Walls (10 to 20 feet)

# Retaining Wall Design with Level Backfill (Vector Analysis)

Input:		
Retaining Wall Height	(H)	20.00 feet
Unit Weight of Retained Soils	(γ)	125.0 pcf
Friction Angle of Retained Soils	(φ)	40.0 degrees
Cohesion of Retained Soils	(c)	85.0 psf
Factor of Safety	(FS)	1.50
Factored Parameters:	$(\phi_{FS})$	29.2 degrees
	$(c_{FS})$	56.7 psf



Failure	Height of	Area of	Weight of	Length of			Active	
Angle	Tension Crack	Wedge	Wedge	Failure Plane			Pressure	
(α)	(H _C )	(A)	(W)	$(L_{CR})$	а	b	(P _A )	D
degrees	feet	feet ²	lbs/lineal foot	feet	lbs/lineal foot	lbs/lineal foot	lbs/lineal foot	P _A
45	2.1	198	24735.3	25.4	4615.2	20120.2	5684.8	
46	2.0	191	23907.2	25.1	4293.6	19613.7	5913.3	'\
47	1.9	185	23102.5	24.7	4008.7	19093.8	6122.0	
48	1.8	179	22320.2	24.4	3755.0	18565.2	6311.9	b
49	1.8	172	21559.6	24.1	3528.1	18031.5	6483.7	
50	1.7	167	20819.6	23.8	3324.0	17495.6	6638.0	
51	1.7	161	20099.3	23.6	3139.9	16959.4	6775.5	
52	1.7	155	19397.6	23.3	2973.0	16424.6	6896.6	
53	1.6	150	18713.6	23.0	2821.3	15892.3	7001.8	
54	1.6	144	18046.4	22.7	2683.0	15363.5	7091.6	VV N
55	1.6	139	17395.1	22.5	2556.4	14838.7	7166.1	1.
56	1.6	134	16758.7	22.2	2440.2	14318.5	7225.7	
57	1.6	129	16136.6	22.0	2333.4	13803.2	7270.6	a
58	1.6	124	15527.8	21.8	2234.9	13292.9	7301.0	u \
59	1.5	119	14931.7	21.5	2143.8	12787.9	7317.0	
60	1.5	115	14347.5	21.3	2059.4	12288.1	7318.6	
61	1.5	110	13774.5	21.1	1981.1	11793.5	7305.8	¥ a *I
62	1.6	106	13212.2	20.9	1908.2	11304.1	7278.6	$\sim c_{FS}^* L_{CR}$
63	1.6	101	12659.9	20.7	1840.2	10819.7	7237.0	
64	1.6	97	12117.0	20.5	1776.7	10340.3	7180.6	
65	1.6	93	11583.0	20.3	1717.2	9865.7	7109.5	Design Equations (Vector Analysis):
66	1.6	88	11057.3	20.1	1661.5	9395.8	7023.2	$a = c_{FS}^* L_{CR}^* \sin(90 + \phi_{FS}) / \sin(\alpha - \phi_{FS})$
67	1.7	84	10539.4	19.9	1609.1	8930.3	6921.4	b = W-a
68	1.7	80	10028.8	19.8	1559.7	8469.2	6803.9	$P_A = b^* tan(\alpha - \phi_{FS})$
69	1.7	76	9525.2	19.6	1513.0	8012.1	6670.1	$EFP = 2 P_A/H^2$
70	1.8	72	9027.9	19.4	1468.9	7559.0	6519.6	

Maximum Active Pressure Resultant

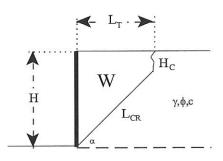
 $P_{A, max}$ 

7318.6 |lbs/lineal foot

Equivalent Fluid Pressure (per lineal foot of wall)

$EFP = 2*P_A/H^2$	
EFP	36.6 pcf
Design Wall for an Equivalent Fluid Pressure:	37 pcf




Project: TF Broadway, LP

File No.: 21545

Description: Undrained Cantilever Retaining Walls (20 to 60 ft in height)

# Retaining Wall Design with Level Backfill (Vector Analysis)

Input:		
Retaining Wall Height	(H)	60.00 feet
Unit Weight of Retained Soils	(γ)	67.6 pcf
Friction Angle of Retained Soils	( <b>þ</b> )	40.0 degrees
Cohesion of Retained Soils	(c)	85.0 psf
Factor of Safety	(FS)	1.50
Factored Parameters:	$(\phi_{FS})$	29.2 degrees
	(c _{FS} )	56.7 psf



Failure	Height of	Area of	Weight of	Length of			Active	T
Angle	Tension Crack	Wedge	Wedge	Failure Plane			Pressure	
(α)	(H _C )	(A)	(W)	$(L_{CR})$	а	b	(P _A )	Б
degrees	feet	feet ²	lbs/lineal foot	feet	lbs/lineal foot	lbs/lineal foot	lbs/lineal foot	P _A
55	2.9	1257	84997.7	69.7	7922.5	77075.1	37222.0	
56	2.9	1211	81881.9	68.9	7560.0	74322.0	37505.9	
57	2.9	1166	78837.6	68.1	7227.1	71610.4	37719.7	
58	2.9	1122	75860.4	67.4	6920.8	68939.6	37864.4	b
59	2.9	1079	72946.6	66.7	6638.1	66308.4	37940.4	
60	2.9	1037	70092.4	66.0	6376.8	63715.6	37948.0	
61	2.9	995	67294.5	65.3	6134.6	61159.8	37887.3	
62	2.9	955	64549.5	64.7	5909.8	58639.7	37757.9	
63	2.9	915	61854.4	64.1	5700.7	56153.7	37559.5	
64	2.9	876	59206.2	63.5	5505.7	53700.4	37291.3	I VV \N
65	3.0	837	56602.1	62.9	5323.7	51278.4	36952.3	
66	3.0	799	54039.6	62.4	5153.5	48886.1	36541.3	
67	3.1	762	51516.1	61.9	4994.0	46522.0	36056.7	a
68	3.1	725	49029.1	61.3	4844.3	44184.8	35496.7	u \
69	3.2	689	46576.5	60.9	4703.6	41872.9	34859.2	
70	3.3	653	44155.9	60.4	4570.9	39585.0	34141.6	
71	3.4	618	41765.4	59.9	4445.6	37319.8	33341.2	¥ 2 *I
72	3.5	583	39402.8	59.4	4327.0	35075.7	32454.8	C _{FS} ⁻ L _{CR}
73	3.6	548	37066.1	59.0	4214.5	32851.7	31478.7	
74	3.8	514	34753.6	58.5	4107.3	30646.3	30409.0	
75	3.9	480	32463.2	58.0	4004.8	28458.3	29241.2	Design Equations (Vector Analysis):
76	4.1	447	30193.1	57.6	3906.4	26286.7	27970.3	$a = c_{FS} * L_{CR} * \sin(90 + \phi_{FS}) / \sin(\alpha - \phi_{FS})$
77	4.4	413	27941.5	57.1	3811.3	24130.2	26590.8	b = W-a
78	4.7	380	25706.7	56.6	3718.7	21987.9	25096.6	$P_A = b^* tan(\alpha - \phi_{FS})$
79	5.0	347	23486.5	56.0	3627.6	19858.9	23481.0	$EFP = 2*P_A/H^2$
80	5.4	315	21279.2	55.4	3536.8	17742.4	21736.8	

#### Maximum Active Pressure Resultant

 $P_{A, \; \text{max}}$ 

37948.0 |lbs/lineal foot

Equivalent Fluid Pressure (per lineal foot of wall)

$EFP = 2*P_A/H^2$	
EFP	21.1 pcf
Hydrostatic Pressure	<u>62.4</u> pcf

Design Wall for an Equivalent Fluid Pressure:

Project: TF Broadway, LP File No.: 21545

Soil Weight	γ	125 pcf
Internal Friction Angle	φ	40 degrees
Cohesion	с	0 psf
Height of Retaining Wall	Н	20 feet

## Restrained Retaining Wall Design based on At Rest Earth Pressure

$\sigma'_h = K_o \sigma'_v$		
	$K_o = 1 - \sin \phi$	0.357
	$\sigma'_v = \gamma H$	2500.0 psf
$\sigma'_{h} =$	893.0 psf	
EFP =	44.7 pcf	
$P_o =$	8930.3 lbs/ft	(based on a triangular distribution of pressure)

Design wall for an EFP of

Project: TF Broadway, LP File No.: 21545

Soil Weight	γ	67.6 pcf	(Bouyant)
Internal Friction Angle	φ	40 degrees	
Cohesion	с	0 psf	
Height of Retaining Wall	Н	60 feet	

# Restrained Retaining Wall Design based on At Rest Earth Pressure

$\sigma'_{\rm h} = K_{\rm o} \sigma'_{\rm v}$		
	$K_o = 1 - \sin\phi$	0.357
	$\sigma'_{v} = \gamma H$	4056.0 psf
$\sigma'_{h} =$	1448.9 psf	
EFP =	24.1 pcf	
$P_o =$	43465.6 lbs/ft	(based on a triangular distribution of pressure)

87 pcf

24.1 (Lateral Earth Pressure	e based on
Bouyant Weight of Soi	1 in EFP)
62.4 (Hydrostatic Pressure)	

Design wall for an EFP of



Project: TF Broadway, LP File No.: 21545

#### Seismically Induced Lateral Soil Pressure on Retaining Wall

#### Input:

Height of Retaining Wall:	(H)	60.0 feet
Retained Soil Unit Weight:	(γ)	125.0 pcf
Horizontal Ground Acceleration:	$(k_h)$	0.32 g

#### Seismic Increment ( $\Delta P_{AE}$ ):

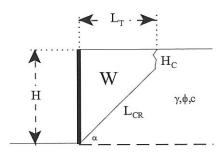
$$\begin{split} \Delta P_{AE} &= (0.5*\gamma*H^2)*(0.75*k_h) \\ \Delta P_{AE} &= 54506.3 \ lbs/ft \end{split}$$

Transfer load to 1/3 of the height of the wall

$$\begin{split} T^*(2/3)^*H &= \Delta P_{AE} ^*0.6^*H \\ T &= 49055.6 \ lbs/ft \end{split}$$

 $EFP = 2*T/H^2$ EFP =

27.3 pcf




Project: TF Broadway LP File No.: 21545

Description: Temporary Shoring Walls (H <= 30 feet)

# Shoring Design with Level Backfill (Vector Analysis)

Input:		
Shoring Height	(H)	30.00 feet
Unit Weight of Retained Soils	(γ)	125.0 pcf
Friction Angle of Retained Soils	(φ)	40.0 degrees
Cohesion of Retained Soils	(c)	85.0 psf
Factor of Safety	(FS)	1.25
Factored Parameters:	$(\phi_{FS})$	33.9 degrees
	(c _{FS} )	68.0 psf



Failure	Height of	Area of	Weight of	Length of			Active	
Angle	Tension Crack	Wedge	Wedge	Failure Plane			Pressure	
(α)	(H _c )	(A)	(W)	$(L_{CR})$	а	b	(P _A )	D
degrees	feet	feet ²	lbs/lineal foot	feet	lbs/lineal foot	lbs/lineal foot	lbs/lineal foot	$P_A$
45	3.3	445	55565.3	37.7	11042.4	44522.9	8757.1	
46	3.1	430	53741.9	37.4	10051.6	43690.2	9388.2	
47	2.9	416	51958.4	37.0	9206.0	42752.4	9970.3	
48	2.8	402	50217.3	36.6	8477.1	41740.2	10505.6	b
49	2.6	388	48519.3	36.3	7843.6	40675.6	10996.0	
50	2.5	375	46863.8	35.9	7288.7	39575.0	11443.2	
51	2.4	362	45249.8	35.5	6799.5	38450.3	11848.9	
52	2.4	349	43675.8	35.1	6365.4	37310.4	12214.6	
53	2.3	337	42140.3	34.7	5978.3	36162.0	12541.6	NX7
54	2.2	325	40641.6	34.3	5631.3	35010.3	12830.9	VV N
55	2.2	313	39177.8	34.0	5318.8	33859.0	13083.7	7.
56	2.1	302	37747.2	33.6	5036.3	32710.9	13300.7	
57	2.1	291	36348.2	33.3	4779.9	31568.3	13482.8	a
58	2.1	280	34979.1	32.9	4546.5	30432.6	13630.6	u V
59	2.1	269	33638.2	32.6	4333.1	29305.1	13744.6	
60	2.1	259	32324.1	32.3	4137.6	28186.5	13825.1	
61	2.0	248	31035.3	32.0	3957.9	27077.4	13872.5	▼*I
62	2.0	238	29770.3	31.7	3792.3	25977.9	13886.9	$c_{FS}*L_{CR}$
63	2.0	228	28527.8	31.4	3639.3	24888.5	13868.3	
64	2.1	218	27306.5	31.1	3497.6	23808.9	13816.7	
65	2.1	209	26105.2	30.8	3366.1	22739.1	13731.9	Design Equations (Vector Analysis):
66	2.1	199	24922.8	30.6	3243.7	21679.1	13613.7	$a = c_{FS}^* L_{CR}^* \sin(90 + \phi_{FS}) / \sin(\alpha - \phi_{FS})$
67	2.1	190	23758.0	30.3	3129.6	20628.5	13461.6	b = W-a
68	2.1	181	22609.8	30.0	3022.9	19587.0	13275.0	$P_A = b^* tan(\alpha - \phi_{FS})$
69	2.2	172	21477.2	29.8	2922.9	18554.4	13053.5	$EFP = 2*P_A/H^2$
70	2.2	163	20359.2	29.5	2828.9	17530.3	12796.1	

Maximum Active Pressure Resultant

 $P_{A, max}$ 

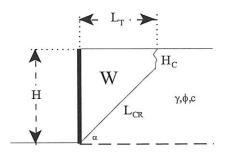
13886.9 lbs/lineal foot

Equivalent Fluid Pressure (per lineal foot of shoring)

$EFP = 2*P_A/H^2$	
EFP	30.9 pcf

Design Shoring for an Equivalent Fluid Pressure:




Project: TF Broadway LP

File No.: 21545

Description: Temporary Shoring Walls (30 < H <= 40 feet)

# Shoring Design with Level Backfill (Vector Analysis)

Input:		
Shoring Height	(H)	40.00 feet
Unit Weight of Retained Soils	(γ)	125.0 pcf
Friction Angle of Retained Soils	(φ)	40.0 degrees
Cohesion of Retained Soils	(c)	85.0 psf
Factor of Safety	(FS)	1.25
Factored Parameters:	$(\phi_{FS})$	33.9 degrees
	(c _{FS} )	68.0 psf



Failure	Height of	Area of	Weight of	Length of			Active	
Angle	Tension Crack	Wedge	Wedge	Failure Plane			Pressure	
(α)	(H _c )	(A)	(W)	$(L_{CR})$	a	b	(P _A )	D
degrees	feet	feet ²	lbs/lineal foot	feet	lbs/lineal foot	lbs/lineal foot	lbs/lineal foot	P _A
45	3.3	795	99315.3	51.9	15179.7	84135.7	16548.5	
46	3.1	768	95990.7	51.3	13787.6	82203.1	17663.9	
47	2.9	742	92755.9	50.7	12605.0	80150.9	18692.0	
48	2.8	717	89610.0	50.1	11589.8	78020.2	19636.9	b
49	2.6	692	86550.5	49.5	10710.2	75840.3	20502.1	
50	2.5	669	83574.4	48.9	9942.1	73632.3	21290.9	
51	2.4	645	80677.8	48.3	9266.4	71411.4	22006.3	
52	2.4	623	77857.1	47.8	8668.3	69188.8	22650.9	
53	2.3	601	75108.3	47.2	8135.8	66972.5	23227.1	
54	2.2	579	72427.8	46.7	7659.3	64768.5	23736.9	VV N
55	2.2	558	69811.9	46.2	7231.0	62580.8	24182.3	1
56	2.1	538	67257.0	45.7	6844.3	60412.7	24564.6	
57	2.1	518	64759.8	45.2	6493.9	58265.9	24885.4	a
58	2.1	499	62317.1	44.7	6175.1	56142.0	25145.7	u (
59	2.1	479	59925.9	44.3	5884.3	54041.6	25346.4	
60	2.1	461	57583.2	43.8	5618.0	51965.2	25488.2	
61	2.0	442	55286.3	43.4	5373.6	49912.7	25571.7	▼*I
62	2.0	424	53032.5	43.0	5148.7	47883.9	25597.0	$c_{FS}*L_{CR}$
63	2.0	407	50819.5	42.6	4941.1	45878.4	25564.3	
64	2.1	389	48644.8	42.2	4749.1	43895.7	25473.4	
65	2.1	372	46506.2	41.9	4571.2	41935.0	25324.1	Design Equations (Vector Analysis):
66	2.1	355	44401.5	41.5	4405.8	39995.7	25115.9	$a = c_{FS}^{*}L_{CR}^{*}\sin(90+\phi_{FS})/\sin(\alpha-\phi_{FS})$
67	2.1	339	42328.8	41.2	4251.9	38076.9	24847.9	b = W-a
68	2.1	322	40286.0	40.8	4108.2	36177.8	24519.4	$P_A = b^* tan(\alpha - \phi_{FS})$
69	2.2	306	38271.3	40.5	3973.9	34297.4	24129.1	$EFP = 2*P_A/H^2$
70	2.2	290	36282.9	40.2	3848.0	32434.9	23675.6	

Maximum Active Pressure Resultant

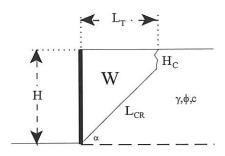
 $P_{A, \max}$ 

25597.0 |lbs/lineal foot

Equivalent Fluid Pressure (per lineal foot of shoring)

$EFP = 2*P_A/H^2$	
EFP	32.0 pcf

Design Shoring for an Equivalent Fluid Pressure:


Project: TF Broadway LP

File No.: 21545

Description: Temporary Shoring Walls (40 < H <= 50 feet)

# Shoring Design with Level Backfill (Vector Analysis)

Input:		
Shoring Height	(H)	50.00 feet
Unit Weight of Retained Soils	(γ)	125.0 pcf
Friction Angle of Retained Soils	(φ)	40.0 degrees
Cohesion of Retained Soils	(c)	85.0 psf
Factor of Safety	(FS)	1.25
Factored Parameters:	$(\phi_{FS})$	33.9 degrees
	(c _{FS} )	68.0 psf



Failure	Height of	Area of	Weight of	Length of			Active	
Angle	Tension Crack	Wedge	Wedge	Failure Plane			Pressure	
(α)	(H _c )	(A)	(W)	$(L_{CR})$	а	b	$(P_A)$	D
degrees	feet	feet ²	lbs/lineal foot	feet	lbs/lineal foot	lbs/lineal foot	lbs/lineal foot	P _A
45	3.3	1245	155565.3	66.0	19316.9	136248.4	26798.4	
46	3.1	1202	150310.7	65.2	17523.6	132787.2	28533.4	
47	2.9	1162	145209.9	64.4	16004.1	129205.8	30132.1	
48	2.8	1122	140257.7	63.6	14702.4	125555.3	31601.0	b
49	2.6	1084	135447.9	62.8	13576.8	121871.1	32945.7	
50	2.5	1046	130773.7	62.0	12595.4	118178.4	34171.5	
51	2.4	1010	126228.2	61.2	11733.3	114494.9	35283.0	
52	2.4	974	121804.4	60.5	10971.1	110833.3	36284.5	
53	2.3	940	117495.7	59.7	10293.3	107202.4	37179.5	
54	2.2	906	113295.8	59.0	9687.4	103608.4	37971.4	VV N
55	2.2	874	109198.5	58.4	9143.2	100055.3	38663.0	2.
56	2.1	842	105198.1	57.7	8652.4	96545.7	39256.8	
57	2.1	810	101289.0	57.1	8207.8	93081.2	39755.0	a
58	2.1	780	97466.0	56.5	7803.8	89662.2	40159.2	u (
59	2.1	750	93724.3	55.9	7435.4	86288.9	40470.9	
60	2.1	720	90059.1	55.4	7098.4	82960.7	40691.1	
61	2.0	692	86466.2	54.8	6789.3	79676.8	40820.7	▼*I
62	2.0	664	82941.2	54.3	6505.0	76436.2	40860.0	$\sim c_{FS} L_{CR}$
63	2.0	636	79480.3	53.8	6242.9	73237.4	40809.2	
64	2.1	609	76079.8	53.3	6000.7	70079.1	40668.1	
65	2.1	582	72736.0	52.9	5776.2	66959.8	40436.3	Design Equations (Vector Analysis):
66	2.1	556	69445.6	52.4	5567.9	63877.7	40112.9	$a = c_{FS}^* L_{CR}^* \sin(90 + \phi_{FS}) / \sin(\alpha - \phi_{FS})$
67	2.1	530	66205.5	52.0	5374.2	60831.3	39696.8	b = W-a
68	2.1	504	63012.5	51.6	5193.6	57818.9	39186.6	$P_A = b^* tan(\alpha - \phi_{FS})$
69	2.2	479	59863.6	51.2	5024.9	54838.7	38580.4	$EFP = 2*P_A/H^2$
70	2.2	454	56756.2	50.8	4867.1	51889.1	37876.2	155. 

Maximum Active Pressure Resultant

P_{A, max}

40860.0 |lbs/lineal foot

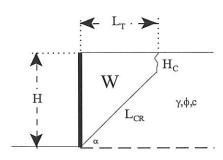
Equivalent Fluid Pressure (per lineal foot of shoring)

$$EFP = 2*P_A/H^2$$

$$EFP \qquad 32.7 \text{ pcf}$$

Design Shoring for an Equivalent Fluid Pressure:




TF Broadway LP Project:

File No.: 21545

Description: Temporary Shoring Walls (50 < H <= 70 feet)

# Shoring Design with Level Backfill (Vector Analysis)

Input:		
Shoring Height	(H)	70.00 feet
Unit Weight of Retained Soils	(γ)	125.0 pcf
Friction Angle of Retained Soils	(φ)	40.0 degrees
Cohesion of Retained Soils	(c)	85.0 psf
Factor of Safety	(FS)	1.25
Factored Parameters:	$(\phi_{FS})$	33.9 degrees
	(c _{FS} )	68.0 psf



Failure	Height of	Area of	Weight of	Length of			Active	
Angle	Tension Crack	Wedge	Wedge	Failure Plane			Pressure	
(α)	(H _c )	(A)	(W)	$(L_{CR})$	a	b	(P _A )	D
degrees	feet	feet ²	lbs/lineal foot	feet	lbs/lineal foot	lbs/lineal foot	lbs/lineal foot	P _A
45	3.3	2445	305565.3	94.3	27591.4	277973.9	54674.1	
46	3.1	2361	295164.1	93.0	24995.5	270168.5	58054.0	
47	2.9	2281	285087.2	91.7	22802.2	262285.0	61167.6	
48	2.8	2203	275318.3	90.5	20927.8	254390.6	64027.6	b
49	2.6	2127	265840.9	89.3	19310.1	246530.8	66645.3	
50	2.5	2053	256638.7	88.1	17902.0	238736.7	69031.2	
51	2.4	1982	247695.8	86.9	16667.0	231028.7	71194.4	
52	2.4	1912	238997.2	85.8	15576.7	223420.5	73143.1	N
53	2.3	1844	230528.8	84.8	14608.3	215920.6	74884.6	
54	2.2	1778	222277.2	83.8	13743.5	208533.7	76425.3	VV N
55	2.2	1714	214229.7	82.8	12967.6	201262.1	77770.9	1
56	2.1	1651	206374.4	81.8	12268.4	194106.0	78926.2	
57	2.1	1590	198700.1	80.9	11635.7	187064.4	79895.3	a
58	2.1	1530	191196.4	80.1	11061.2	180135.2	80681.6	a
59	2.1	1471	183853.4	79.3	10537.7	173315.7	81287.9	
60	2.1	1413	176661.7	78.5	10059.3	166602.4	81716.3	
61	2.0	1357	169612.5	77.7	9620.8	159991.7	81968.3	¥ . *I
62	2.0	1302	162697.6	77.0	9217.8	153479.8	82044.7	✓ C _{FS} ·L _{CR}
63	2.0	1247	155909.1	76.3	8846.5	147062.6	81945.9	
64	2.1	1194	149239.7	75.6	8503.7	140736.0	81671.5	
65	2.1	1141	142682.1	75.0	8186.4	134495.7	81220.6	Design Equations (Vector Analysis):
66	2.1	1090	136230.0	74.3	7892.2	128337.8	80591.5	$a = c_{FS}^* L_{CR}^* \sin(90 + \phi_{FS}) / \sin(\alpha - \phi_{FS})$
67	2.1	1039	129876.7	73.7	7618.8	122257.9	79782.1	b = W-a
68	2.1	989	123616.4	73.2	7364.3	116252.1	78789.5	$P_A = b^* tan(\alpha - \phi_{FS})$
69	2.2	940	117443.3	72.6	7127.0	110316.3	77610.2	$EFP = 2*P_A/H^2$
70	2.2	891	111351.8	72.1	6905.2	104446.5	76240.1	

Maximum Active Pressure Resultant

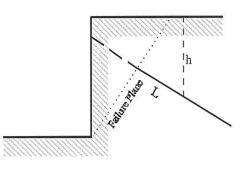
P_{A, max}

82044.7 |lbs/lineal foot

Equivalent Fluid Pressure (per lineal foot of shoring)

n Fauivalent Fluid Pressure	34 ncf
EFP	33.5 pcf
$EFP = 2*P_A/H^2$	

Design Shoring for an Equivalent Fluid Pressure:


# **Tiebacks Calculations**

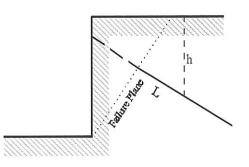
Project: TF Broadway, LP File No. 21545 (Ref: Bowles, 1982)

Soil Parameters:			
Weight of Soil	γ	125.00	lbs/ft ³
Friction Angle	φ		degrees
Cohesion	с	85.00	lbs/ft ²
Tieback Angle	α	20.00	degrees
Design Assumptions:			
Diameter of Grout	d	0.50	feet
Length of Embeddment	L	20.00	feet
Depth to midpoint of Embeddment	h	10.00	feet
Earth Pressure Coefficient	K	0.50	
Factor of Safety Applied	F.S.	1.50	
<u>Ultimate Resistance:</u> Eq: pi*d*γ*L*h*cos(a)*tan(φ)+c*pi*d*	R _{ult}	32.83	kips
Allowable Resistance: Allowable Skin Friction:	$R_{allow} = R_{ult}/F.S.$ $R_{allow}/2/pi/r/L$	21.89 696.75	1

Allowable Skin Friction Design Value

550 psf




# **Tiebacks Calculations**

Project: TF Broadway, LP File No. 21545 (Ref: Bowles, 1982)

Soil Parameters:			
Weight of Soil	γ	125.00	lbs/ft ³
Friction Angle	φ	40.00	degrees
Cohesion	с	85.00	lbs/ft ²
Tieback Angle	α	40.00	degrees
Design Assumptions:			
Diameter of Grout	d	0.50	feet
Length of Embeddment	L	20.00	feet
Depth to midpoint of Embeddment	h	10.00	feet
Earth Pressure Coefficient	K	0.50	
Factor of Safety Applied	F.S.	1.50	
<u>Ultimate Resistance:</u> Eq: pi*d*γ*L*h*cos(a)*tan(φ)+c*pi*d*	R _{ult}	27.11	kips
Allowable Resistance: Allowable Skin Friction:	$R_{allow} = R_{ult}/F.S.$ $R_{allow}/2/pi/r/L$	18.07 575.32	kips psf

# Allowable Skin Friction Design Value

550 psf

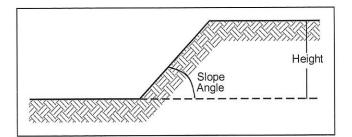




Project: TF Broadway, LP File No.: 21545

# **Slope Stability Calculations**

#### Input


Soil Density	(γ)
Friction Angle	( <b>þ</b> )
Cohesion	(c)
Factor of Safety	(FS)

125 pcf 40 degrees 85 psf 1.25

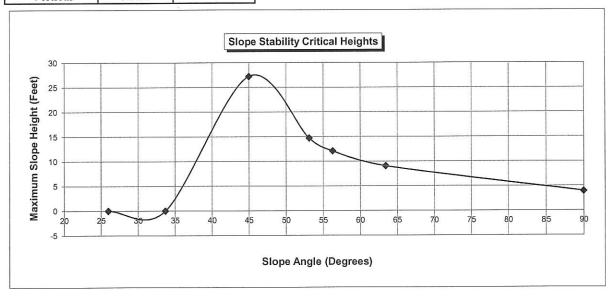
#### Stability Number (N)

(¢d)	33.9 degrees
N _(2:1)	0.000
N _(1.5:1)	0.000
N _(1:1)	0.020
N _(3/4:1)	0.037
N _(1:1.5)	0.045
N _(1:2)	0.060
N _(vertical)	0.138

Slope Angle (h:v)	Slope Angle (Degrees)	Maximum Height (Feet)
2:1	26.00	#DIV/0!
$1^{1}/_{2}:1$	33.69	#DIV/0!
1:1	45.00	27
³ / ₄ :1	53.13	15
$1:1^{1}/_{2}$	56.30	12
$\frac{1}{2}$ : 1	63.43	9
Vertical	90.00	4



#### Reference: Taylor's Chart (1937)


 $(\phi_{\delta})$ = ArcTan[(Tan $\phi$ )/FS]

$$N = \frac{c}{(\gamma)(H)(FS)}$$

(γ)(N)(FS) Assumptions: Slope is uniform, soils are homogeneous,

no water seepage, no surcharge loads.

H= c



TF Broadway, LP File No .: 21545 Description: Foundation Pile Design 3/16/2018

#### **Driven Pile Capacity Calculation**

Depth of

Project:

<b>Input Data:</b> Unit Weight of Overlying Soil Layer Thickness of Overlying Soil Layer	$\gamma_1 \\ H_1$	125 pcf 15 feet
Unit Weight of Bearing Strata Friction Angle of Bearing Strata Cohesion of Bearing Strata Minimum Embedment into Bearing Strata Unit Weight of Water Depth to Groundwater from Pile Cap	$\begin{array}{c} \gamma_2 \\ \phi_2 \\ c_2 \\ H_2 \\ \gamma_w \\ H_w \end{array}$	<ul><li>125 pcf</li><li>37 degrees</li><li>0 psf</li><li>10 feet</li><li>62.4 pcf</li><li>6 feet</li></ul>
Lateral Earth Pressure Coefficient: Applied Factor of Safety: Factored Skin Friction	$\begin{aligned} K_c &= 1.20\\ FS &= 2\\ f_s/FS &= [c_2+K_c*\sigma'_v] \end{aligned}$	

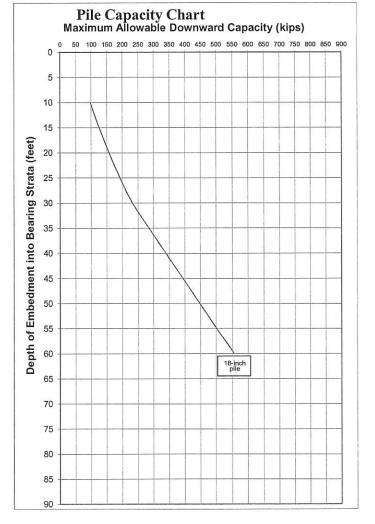
Maximum Allowable Downward Pile Capacity

#### Pile Design:

Driven <<Driven/Drilled Circular <<Circular/Square Pile

#### **Pile Dimension:**

inch diameter pile 18

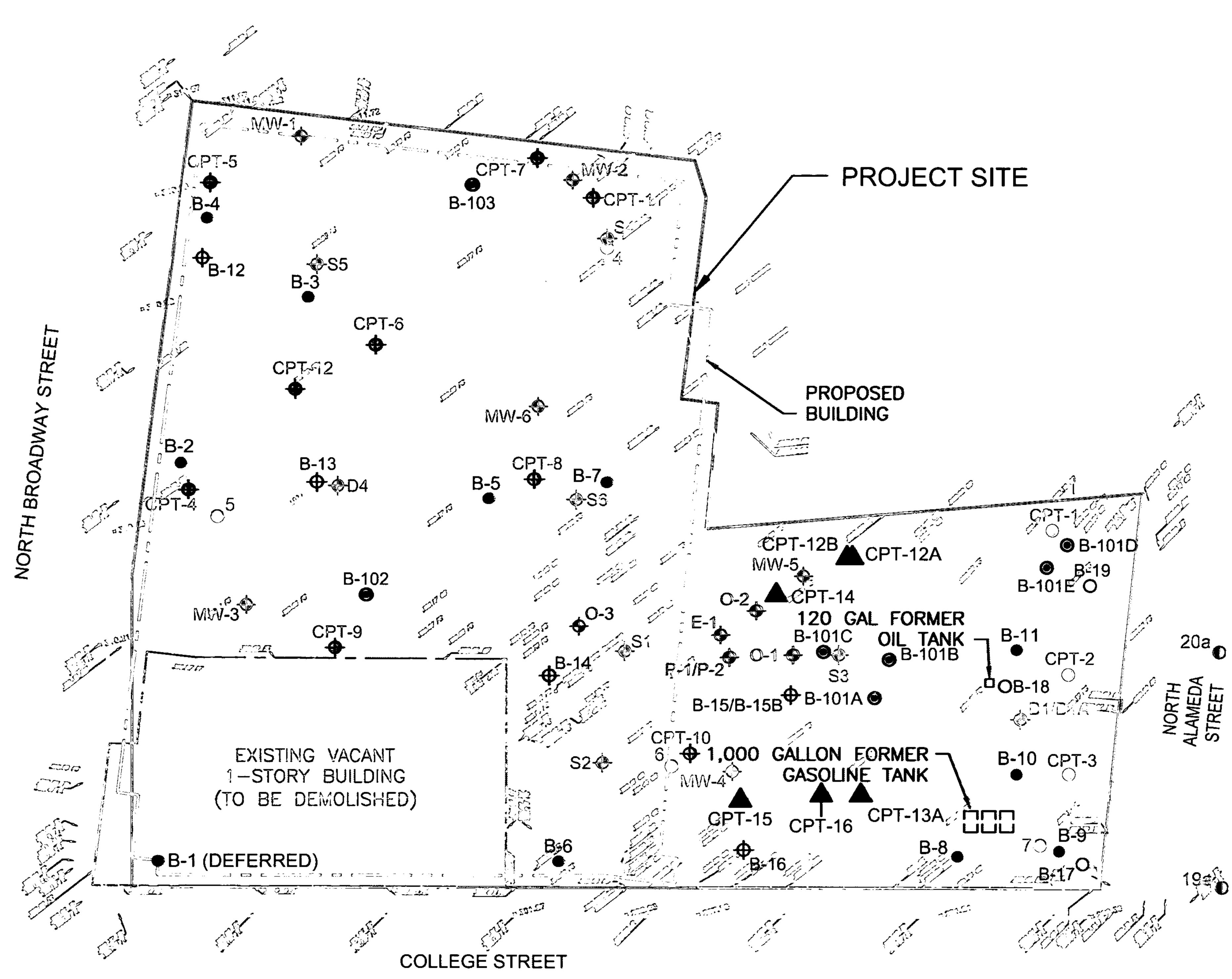

- 18 inch diameter pile
- 18 inch diameter pile

#### Critical Depth Limit (Dc):

20 В

#### Pile Capacity:

	Depth of	Maximum Allows	able Downward P	
Total	Embedment	Capacity of	Capacity of	Capacity of
Depth of	into Bearing	18 inch	18 inch	18 inch
Pile	Strata	diameter pile	diameter pile	diameter pile
(feet)	(feet)	(kips)	(kips)	(kips)
25	10	97.9	97.9	97.9
26	11	103.3	103.3	103.3
27	12	108.8	108.8	108.8
28	13	114.5	114.5	114.5
29	14	120.3	120.3	120.3
30	15	126.3	126.3	126.3
31	16	132.4	132.4	132.4
32	17	138.6	138.6	138.6
33	18	144.9	144.9	144.9
34	18	151.4	151.4	151.4
35	20	158.0	158.0	151.4
36	20	164.8	164.8	164.8
37	21	171.7	171.7	171.7
38	23	178.7	178.7	178.7
39	23	185.8	185.8	185.8
40	24	193.1	193.1	193.1
40	25	200.5	200.5	200.5
41	20	200.5	200.3	200.3
42	27	215.8	215.8	215.8
		213.8	213.8	213.8
44	29			
45	30	231.5	231.5	231.5
46	31	242.4	242.4	242.4
47	32	253.2	253.2	253.2
48	33	264.0	264.0	264.0
49	34	274.8	274.8	274.8
50	35	285.6	285.6	285.6
51	36	296.4	296.4	296.4
52	37	307.2	307.2	307.2
53	38	318.1	318.1	318.1
54	39	328.9	328.9	328.9
55	40	339.7	339.7	339.7
56	41	350.5	350.5	350.5
57	42	361.3	361.3	361.3
58	43	372.1	372.1	372.1
59	44	382.9	382.9	382.9
60	45	393.8	393.8	393.8
61	46	404.6	404.6	404.6
62	47	415.4	415.4	415.4
63	48	426.2	426.2	426.2
64	49	437.0	437.0	437.0
65	50	447.8	447.8	447.8
66	51	458.7	458.7	458.7
67	52	469.5	469.5	469.5
68	53	480.3	480.3	480.3
69	54	491.1	491.1	491.1
70	55	501.9	501.9	501.9
71	56	512.7	512.7	512.7
72	57	523.5	523.5	523.5
73	58	534.4	534.4	534.4
74	59	545.2	545.2	545.2
75	60	556.0	556.0	556.0

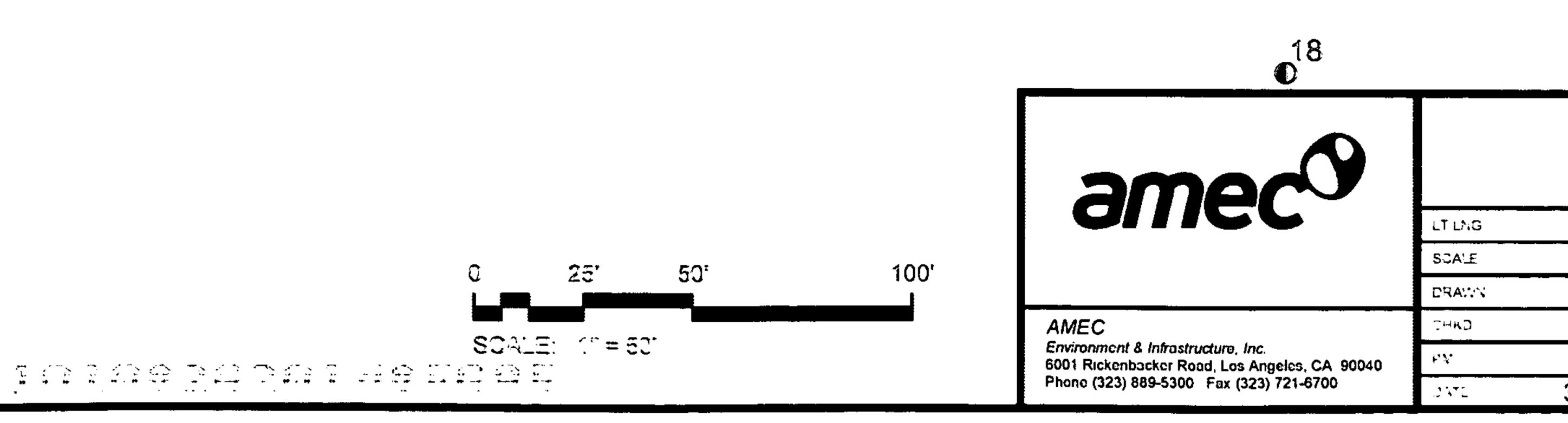


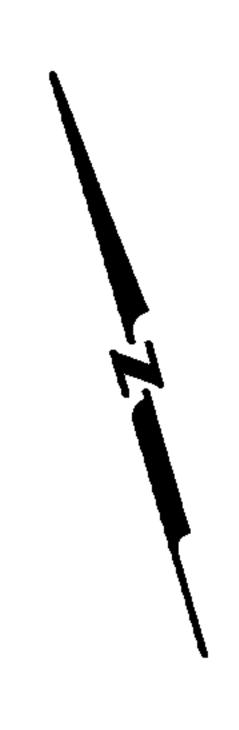

Note: 1. Minimum pile embedment depth of 10 feet

2. Uplift capacity may be designed using 50% of the downward capacity

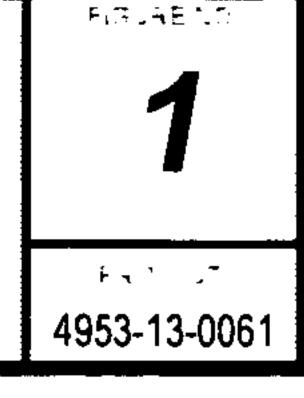
3. Pile should be spaced a minimum of 3 diameters on center

4. See text of report for pile details and installation recommendations





# **REFERENCES:**

1. SITE PLAN DATED FEBRUARY 2, 2004 AND PROVIDED BY NAKADA & ASSOCIATES, INC.


2. MONITORING WELLS SURVEYED BY DULIN & BOYNTON LICENSED SURVEYORS FEBRUARY 2005.

3. A.L.T.A./ACSM LAND TITLE SURVEY DATED JANUARY 31, 2003 BY MOLLENHAUER GROUP.





1" = 50'	
VMN	
RM/HP	
MBH	
3/26/2013	



# PLOT PLAN

# NOTE: MONITORING WELL NOT CONSTRUCTED AT MW-4; BORING TERMINATED

- · · Ψ	
B-19 O	MARCH 2004 GEOPROBE BORING (4953-03-3442)
B-11	FEBRUARY 2004 BORING (4953-03-3441)
7 🔿	PRIOR INVESTIGATION (A-81132)
20a D	PRIOR INVESTIGATION (70111-0-0041) 
B-15B	GEOPROBE REDRILLED THROUGH BORING B-15
	PREVIOUS UST LOCATION (REMOVED 1956)

- WORKS, GEOTECHNICAL ENGINEERING DIVISION B-16 🕁 MARCH 2004 BORING (4953-03-3442)
- S3/D4-🜮 MARCH 2005 METHANE AND HYDROGEN SULFIDE INVESTIGATION (4953-03-3445) MW-1 📀 DECEMBER 2004 MONITORING WELL INSTALLED BY CITY OF LOS ANGELES, DEPT. OF PUBLIC
- APRIL 2005 CONE PENETROMETER TESTS CPT-11-(4953-05-3446)
- FEBRUARY 2005 CONE PENETROMETER CPT-3 TESTS (4953-03-3444)
- P-2 😍 PIEZOMETER (4953-03-3444)
- OBSERVATION WELLS (4953-03-3444)
- FEBRUARY 2005 AQUIFER TESTING INVESTIGATION

JANUARY 2013 CONE PENETROMETER TESTS

- FEBRUARY 2005 AQUIFER TESTING INVESTIGATION E-1 🗘 EXTRACTION WELL (4953-03-3444)
- (4953 13 0061)FEBRUARY 2005 AQUIFER TESTING INVESTIGATION 0-3 🔶
- B-103 🔘 BORING LOCATION AND NUMBER

EXPLANATION

**CURRENT INVESTIGATION** 

PRIOR_INVESTIGATIONS

CPT-16

Monitoring Well	MW Lip Elev. (ft) ⁽²⁾	Date Installed	Screen Interval (ft)	Date of Monitoring	Elevation to Groundwater (ft)	Depth to Groundwater (ft)
				12/2/2004 (3)	251.53	59
				12/21/2004 (3)	264.33	46.2
MW - 1	310.53	12/2/2004	30-60	1/13/2005 (3)	264.73	45.8
101 00 - 1	510.55	12/2/2004	50-00	1/26/2005 (3)	265.13	45.4
				2/15/2005 (4)	265.31	45.22
				2/25/2005 (4)	265.79	44.74
2				12/3/2004 ⁽³⁾	258.63	50
				12/21/2004 (3)	264.28	44.35
MW - 2	308.63	12/3/2004	20.60	1/13/2005 (3)	264.63	44
141 14 - 2	508.05	12/3/2004	30-60	1/26/2005 (3)	265.03	43.6
				2/15/2005 (4)	265.95	42.68
				2/25/2005 (4)	265.89	42.74
	309.73	12/1/2004	30-60	12/1/2001 (3)	267.73	42
				12/21/2004 (3)	264.13	45.6
MW - 3				1/13/2005 (3)	264.23	45.5
141 (4 - 5				1/26/2005 (3)	265.03	44.7
				2/15/2005 (4)	265.07	44.66
				2/25/2005 (4)	265.33	44.4
<u>M</u> W - 4	N/A	12/10/2004	N/A ^a	N/A ^a	N/A ^a	N/A ^a
				12/9/2004 ⁽³⁾	248.3	49
				12/21/2004 (3)	264.6	32.7
MW - 5	297.3	12/9/2004	30-60	1/13/2005 (3)	267.7	29.6
WI W = 5	271.5	12/9/2004	30-00	1/26/2005 (3)	267.9	29.4
				2/15/2005 (4)	267.96	29.34
				2/25/2005 (4)	269.89	27.41
2				12/7/2004 (3)	259.54	49
				12/21/2004 (3)	264.24	44.3
MW - 6	308.54	12/7/2004	30-60	1/13/2005 (3)	264.54	44
111 11 - 0	500.54	12/1/2004	50-00	1/26/2005 (3)	265.04	43.5
				2/15/2005 (4)	265.24	43.3
				2/25/2005 (4)	265.55	42.99
				2/11/2005	272.14	27
E - 1	299.14	2/11/2005	20-40	2/15/2005	272.78	26.36
				2/25/2005	274.75	24.39

#### Table 1: Groundwater Data in Monitoring Wells



Monitoring Well	MW Lip Elev. (ft) ⁽²⁾	Date Installed	Screen Interval (ft)	Date of Monitoring	Elevation to Groundwater ft)	Depth to Groundwater (ft)	
				2/9/2005	271.88	25	
O - 1	296.88	2/9/2005	20-40	2/15/2005	273.06	23.82	
				2/25/2005	274.67	22.21	
				2/9/2005	271.25	27	
O - 2	298.25	2/9/2005	20-40	2/15/2005	268.37	29.88	
				2/25/2005	274.67	23.58	
					2/10/2005	275.2	30
				2/15/2005	265.45	39.75	
O - 3	305.2	2/10/2005	25-45	2/25/2005	265.57	39.63	
			[	2/15/2005	269.55	29.2	
				2/25/2005	272.05	26.7	
				2/10/2005	270.73	28	
P - 2	298.73 2/10/2005	50-60	2/15/2005	264.95	33.78		
			Ī	2/25/2005	265.31	33.42	

#### Table 1 (Continued): Groundwater Data in Monitoring Wells

By: WL 2/19/2013, Checked: MAE 3/1/2013

⁽¹⁾ Monitoring wells constructed by City of Los Angeles, Department of Public Works, Geotechnical Division (Dec. 2004).

⁽²⁾ Monitoring well lip elevation measured in February 2005 by Dulin & Boynton Surveyors. Elevations measured relative to permanent mark on top of well casing (north).

(3) Groundwater depth measurements collected by City of Los Angeles, Department of Public Works, Geotechnical Division.

⁽⁴⁾ Groundwater depth measurements collected by MACTEC in February 2005 during field investigation as a part of aquifer testing and dewatering consultation services.

⁽⁴⁾ Aquifer Test Wells installed by MACTEC in February 2005 as a part of aquifer testing and dewatering consultation services (See report dated April 2005)

^a Monitoring well not installed due to extreme OVA values.

# PRESENTATION

# OF CONE PENETRATION TEST DATA

Project:

Bond China Town Los Angeles, CA February 11, 2005

Prepared for:

Mr. John McKeown MACTEC 200 Citadel Drive, 2nd Floor Los Angeles, CA 90040-1554 Office (323) 889-5300 / Fax (323) 889-5398

Prepared by:



KEHOE TESTING C ENGINEERING 15571 Industry Lane Huntington Beach, CA 92649-1534 Office (714) 901-7270 / Fax (714) 901-7289

# TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

...

#### APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- Interpretation Output (CPTINT)
- CPTINT Correlation Table

#### PRESENTATION

# OF CONE PENETRATION TEST DATA

#### 1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the Bond China Town project located in Los Angeles, California. The work was performed by Kehoe Testing & Engineering (KTE) on February 11, 2005. The scope of work was performed as directed by MACTEC personnel.

#### 2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at three locations to determine the soil lithology. The groundwater measurements were taken in the open CPT hole approximately 10 minutes after completion of CPT. The following **TABLE 2.1** summarizes the CPT soundings performed:

	DEPTH OF CPT (ft)	COMMENTS/NOTES:	
CPT-1	59	Groundwater @ 23.0 it	
CPT-2	49	Groundwater @ 18.9 ft	
CPT-3	59	Groundwater @ 16.2 ft	

TABLE 2.1 - Summary of CPT Soundings

#### 3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone and recorded the following parameters at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Inclination
- Sleeve Friction (fs)
- Penetration Speed
- Dynamic Pore Pressure (u)
- Pore Pressure Dissipation (at selected depths)

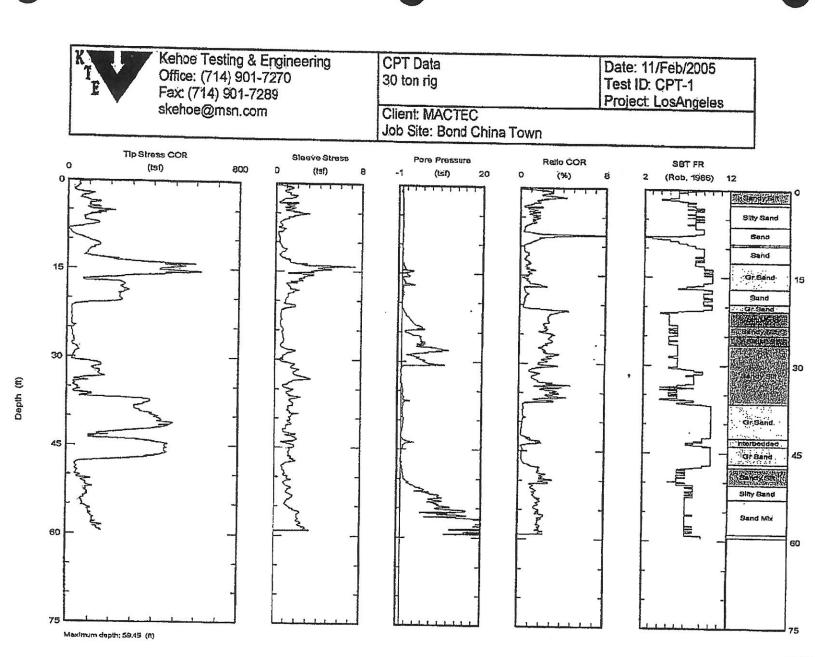
The above parameters were recorded and viewed in real time using a portable computer and stored on a diskette for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

#### 4. CONE PENETRATION TEST DATA & INTERPRETATION

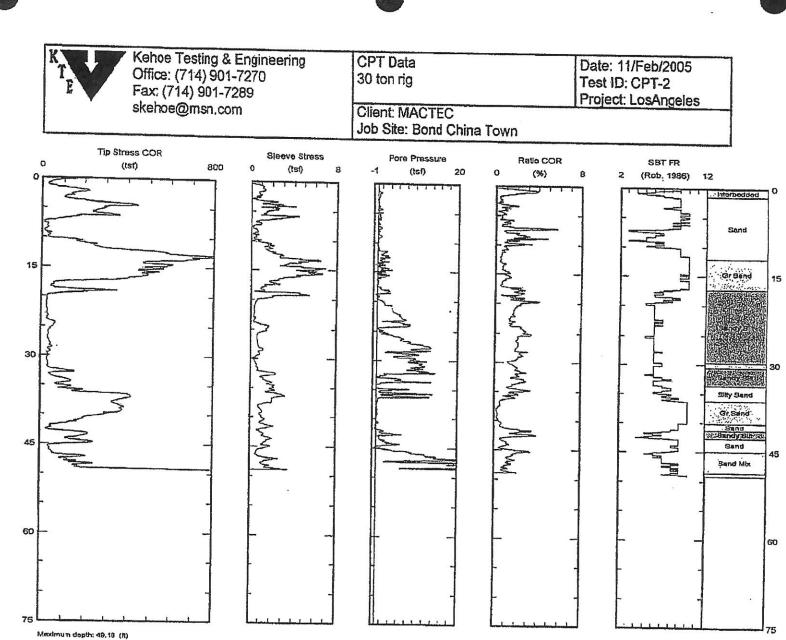
The Cone Penetration Test data is presented in graphical form in the attached Appendix. Penetration depths are referenced to ground surface. The soil classification on the CPT plots is derived from the CPT Classification Chart (Robertson, 1986) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

Output from the interpretation program CPTINT provides averaged CPT data over one-foot intervals. The CPTINT output includes Soil Classification Zones, SPT N Values and Undrained Shear Strength (Su). A summary of the equations used for the tabulated parameters is provided in the CPTINT Correlation Table in the Appendix.

The interpretation of soils encountered on this project was carried out using correlations developed by Robertson et al, 1986. It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u. In these situations, experience, judgment and an assessment of the pore pressure data should be used to infer the soil behavior type.


If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

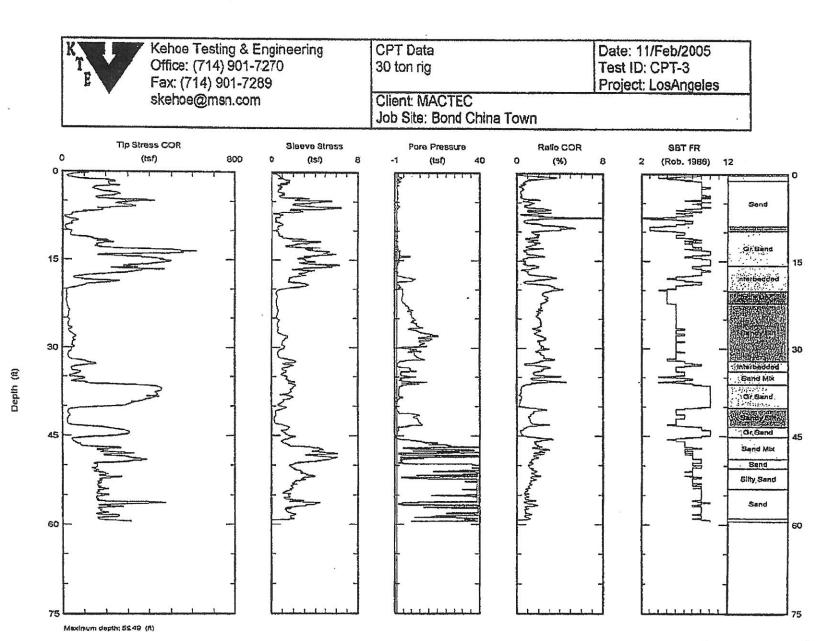

Kehoe Testing & Engineering

Steven P. Kehoe, P.E. President

02/17/05-BS



Test 10: CPT-1 F7e:211F0501C.eep




Depth (ft)

111


(11)

TertiD: CPT-2 Fis:211F0502C.orp



Tett ID; CPT-3 FD; 211F0503C.erp

<u>2001887,000500000</u>



Zone

#### Soil Behavior Type

1		Sensitive, Fine Grained
2		Organic Material
3		Clay
4		Silty Clay to Clay
5	躙	Clayey Silt to Silty Clay
6		Sandy Sill to Clayey Silt
7		Silty Sand to Sandy Silt
8		Sand to Silty Sand
9		Sand
10		Gravelly Sand to Sand
11		Very Still Fine Grained*
12		Sand to Clayey Sand*
		*Overconsolidated or cemented

CPT-1

".	I INPI	Л FILE: C:	Temp\CPT-	1.CSV				
	Depth (feet)	Qt(avg) (TSF)	Fs(avg) (TSF)	Rf (%)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	SU (TSF)
	0.500 1.500 4.500 4.500 5.500 6.500 9.500 10.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 22.500 22.500 22.500 22.500 22.500 22.500 22.500 22.500 22.500 22.500 22.500 22.500 22.500 32.500 32.500 32.500 32.500 32.500 32.500 33.500 33.500 32.500 32.500 33.500 32.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 33.500 3	53.923 39.858 84.321 108.779 119.300 141.769 88.521 106.614 12.179 50.254 128.900 138.850 93.893 279.346 501.277 494.162 188.850 264.335 264.335 264.335 264.271 218.208 29.708 48.093 279.346 271.228.208 28.208 29.708 49.750 95.604 149.750 95.604 149.750 32.871 262.251.693 244.336 149.750 95.604 44.771 147.4927 328.0297 452.629 138.029 422.5554 419.879 452.629 138.0297 452.629 138.0297 452.400 91.315 84.523 93.9003 124.3356 93.9003 124.336 136.064 154.143 1354.143	$\begin{array}{c} 0.943\\ 1.120\\ 1.148\\ 1.948\\ 0.622\\ 1.948\\ 0.6221\\ 0.394\\ 1.948\\ 0.6221\\ 0.394\\ 1.948\\ 2.765\\ 0.6275\\ 2.260\\ 1.8829\\ 2.755\\ 1.273\\ 1.279\\ 1.279\\ 1.279\\ 1.279\\ 1.279\\ 1.279\\ 1.358\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298\\ 1.298$	$\begin{array}{c} 1.749\\ 2.808\\ 1.023\\ 1.241\\ 0.703\\ 3.726\\ 0.397\\ 0.6680\\ 0.9659\\ 1.171\\ 0.5975\\ 0.6680\\ 0.9632\\ 2.403\\ 2.33161\\ 2.332\\ 2.33161\\ 2.332\\ 2.33161\\ 2.332\\ 2.33161\\ 2.332\\ 2.33161\\ 2.332\\ 2.332\\ 1.674\\ 2.332\\ 2.332\\ 1.674\\ 2.332\\ 2.332\\ 1.674\\ 2.332\\ 2.332\\ 1.674\\ 2.332\\ 2.332\\ 1.674\\ 2.332\\ 2.332\\ 1.674\\ 2.332\\ 2.332\\ 1.674\\ 2.335\\ 1.3428\\ 1.3428\\ 1.3428\\ 1.3428\\ 1.3428\\ 1.9069\\ 2.029\\ 1.9029\\ 1.9029\\ 2.029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\ 1.9029\\$	767888894899899099555665666667887668000080008667887777779	17157693108125324699681763309121119334614756011942873773683142222733050430	26 23 49 44 53 20 21 85 27 20 48 30 27 20 48 30 27 20 48 30 27 20 19 95 10 75 220 220 24 440 990 90 10 225 220 24 440 990 90 10 225 220 24 440 23 10 90 20 21 225 220 24 440 24 20 22 20 24 24 24 24 24 24 24 24 24 24 24 24 24	99999999999999999999999999999999999999

.....

Page 1

! INPUT FILE: C:\Temp\CPT-2.CSV							
Depth (feet)	Qt(avg) (TSF)	FS(avg) (TSF)	Rf (%)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	Su (TSF)
44 444	58.292 103.571 162.353 356.215 263.500 169.821 24.036 21.167 32.069 155.793 282.714 591.623 686.407 535.793 500.379 452.593 115.023 119.207 27.508 25.892 29.023 30.508 59.0007 34.150 39.4695 36.405 39.4695 36.405 30.4085 91.029 64.800 112.075 363.867 355.958 350.077 216.685 363.867 355.958 350.077 216.685 363.867 355.958 357.950 107.408 64.800 112.075 363.867 355.958 357.950 107.408 64.800 122.075 107.408 64.800 127.907 178.343 46.892 71.900 125.467	1.072 0.681 1.548 2.241 2.021 1.598 0.462 0.531 0.522 1.429 1.717 2.631 4.829	1.035 0.407 0.953 0.629 0.767 0.941 1.923 2.510 1.626 0.917 0.607 0.445 0.704	78999099650990009088766666666666777800009879967890 1009088766666666666777800009879967890	192233170390120440 897278811011236357423191638796261 112363591638796261		9E9 9E9 9E9 9E9 9E9 9E9 9E9 9E9 9E9 9E9

.

 $\sim -\infty$ 

#### 1010920201495095

. . .

CPT-3

"! TNP	INPUT FILE; C:\Temp\CPT-3.CSV {						
" Depth " (feet)	Qt(avg) (TSF)	Fs(avg) (TSF)	Rf (%)	Rf Zone (2011e #)	Spt N (blow/	Spt N1 ft) (blow/ft)	SU (15F)
0.500 1.500 2.500 3.500 9.500 10.500 11.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500 15.500 21.500 22.500 22.500 22.500 22.500 22.500 23.500 24.500 25.500 24.500 25.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 26.500 27.500 27.500 28.500 30.500 31.500 34.500 35.500 35.500 35.500 36.500 37.500 39.500 31.500 31.500 31.500 31.500 31.500 32.500 31.500 32.500 31.500 31.500 31.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.500 35.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.499 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.490 55.	$\begin{array}{c} 44.283\\ 172.643\\ 172.643\\ 187.757\\ 218.936\\ 247.140\\ 292.907\\ 165.357\\ 322.907\\ 165.357\\ 322.907\\ 165.357\\ 322.907\\ 165.357\\ 322.907\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.362\\ 147.36$	0.614 3.264 0.891 3.4211 3.4211 3.4211 0.6638 2.387 0.6538 3.4211 0.6638 3.4211 0.6638 3.4211 0.6538 2.62593 3.66981 2.625933 0.65525933 0.65525933 0.65525933 0.65525933 0.6553833 2.625933 0.65538333 2.6259333 0.65538333 2.6259333 0.65538333 2.6259333 0.65538333 2.6259333 0.6553833 0.65538337 1.2593373735 1.55025333182323 1.4829553318232 1.48295533182323 1.4829553318232 1.48295533182323 1.58024353232 1.4829553312323 1.5902933312323 1.5902933312323 1.59029333123232 1.5902933312323232323232323232323232323232323	$\begin{array}{c} 1.387\\ 0.407\\ 0.963\\ 2.069\\ 2.22\\ 3.741\\ 1.490\\ 1.086\\ 1.199\\ 2.722\\ 3.741\\ 1.490\\ 1.086\\ 1.199\\ 2.722\\ 2.0884\\ 1.199\\ 2.722\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0884\\ 1.199\\ 2.725\\ 2.0944\\ 1.199\\ 2.725\\ 2.0944\\ 1.199\\ 2.725\\ 2.0944\\ 1.199\\ 2.725\\ 2.0944\\ 1.199\\ 2.725\\ 1.199\\ 1.2860\\ 0.38699\\ 1.2860\\ 0.189\\ 1.399\\ 1.399\\ 1.399\\ 1.399\\ 1.399\\ 1.399\\ 1.399\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\ 1.199\\$	7999997674788099988655556666666666677000077690777898889999999	1336276326112526534151090111126184117194316120977820667733327599	21 504 53 714 808 124 77 86 39 33 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	99999999999999999999999999999999999999

Page 1

# SUMMARY

# OF CONE PENETRATION TEST DATA

#### Poper

Chinatown Blossom Plaza 904 N. Broadway Los Angeles, CA January 29, 2013

Propa ed ta:

Mr. Debanik Chaudhuri AMEC Environment & Infrastructure, Inc. 6001 Rickenbacker Road Los Angeles, CA 90040 Office (323) 889-5300 / Fax (323) 721-6700

Picp'der by



KEHOE TESTING & ENGINEERING 5415 Industrial Drive Huntington Beach, CA 52649-1518 Office (714) 901 7278 / Fox (714) 901 7289

Figure A-1

# **TABLE OF CONTENTS**

- 1. INTRODUCTION
- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

#### APPENDIX

- CPT Plots
- CP1 Classification/Soil Behavior Chart
- Interpretation Output (CPTINT)
  CPTINT Correlation Table

#### Figure A-2 1010920201495005

#### PRESENTATION

# OF CONE PENETRATION TEST DATA

#### 1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the Bond China Town project located in Los Angeles, California. The work was performed by Kehoe Testing & Engineering (KTE) on April 5, 2005. The scope of work was performed as directed by MACTEC personnel.

#### 2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at nine locations to determine the soil lithology. The groundwater measurements were taken in the open CPT hole approximately 10 minutes after completion of CPT. The following **TABLE 2.1** summarizes the CPT soundings performed:

LOCATION	DEPTH OF CPT (ft)	COMMENTS/NOTES:
CPT-4	16	Refusal, hole open to 16 ft. (dry)
CPT-5	17	Refusal, hole open to 17 ft. (dry)
CPT-6	19	Refusal, hole open to 19 ft. (dry)
CPT-7	25	Refusal, hole open to 25 ft. (dry)
CPT-8	28	Refusal, hole open to 28 ft. (dry)
CPT-9	19	Refusal, hole open to 18 ft. (dry)
CPT-10	63	Refusal, groundwater at 24 ft.
CPT-11	70	Refusal, hole open to 34 ft. (dry)
CPT-12	16	Refusal, hole open to 16 ft. (dry)

TABLE 2.1 - Summary of CPT Soundings

#### 3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone and recorded the following parameters at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Inclination
- Sleeve Friction (fs)
- Penetration Speed
- Dynamic Pore Pressure (u)
- Pore Pressure Dissipation (at selected depths)

The above parameters were recorded and viewed in real time using a portable computer and stored on a diskette for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating property.

#### 4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. Penetration depths are referenced to ground surface. The soil classification on the CPT plots is derived from the CPT Classification Chart (Robertson, 1986) and presents major soll lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

Output from the interpretation program CPTINT provides averaged CPT data over one-foot intervals. The CPTINT output includes Soil Classification Zones, SPT N Values and Undrained Shear Strength (Su). A summary of the equations used for the tabulated parameters is provided in the CPTINT Correlation Table in the Appendix.

The interpretation of soils encountered on this project was carried out using correlations developed by Robertson et al, 1986. It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u In these situations, experience, judgment and an assessment of the pore pressure data should be used to infer the soil behavior type.

If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

**Kehoe Testing & Engineering** 

Steven P. Kehoe, P.E. President

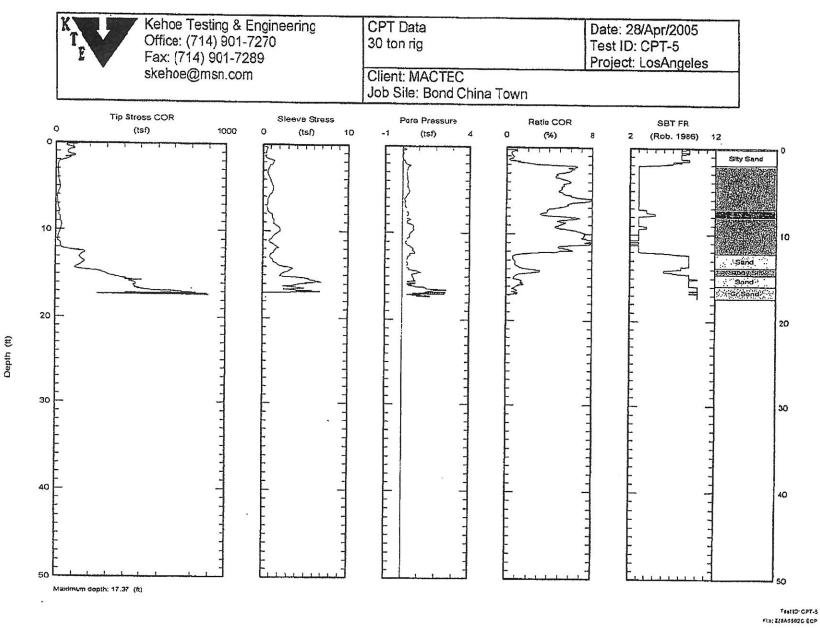
05/04/05-jh

Kehce Testing & Engineering Office: (714) 901-7270 Fax: (714) 901-7289 CPT Data Date: 28/Apr/2005 30 ton rig Test ID: CPT-4 Project: LosAngeles skehoe@msn.com Client: MACTEC Job Site: Bond China Town Tip Stress COR Sleeve Stress Pore Pressure Ratio COR SBT FR 0 (tsf) 1000 0 (tsf; 10 -1 (tsf) 0 4 (%) 8 2 (Rob. 1936) 12 0 Elity Sand ::V3 Fine Gr WESthad Stiffard VS Fine Gr. 10 · • · · Sand Silty Sand Sand 5 20 Depth (ft) 30 40 50 Maximum depth: 16.39 (ft)

000995000090000

111

111


Test ID; CPT-4 FPe; 218A0801C.6CP

50

10

20

30



1... 1:1 1)) .10  $\mathbb{D}$ .10 1:,) 1) ir) 15 :10 [!'] :17

1.

111

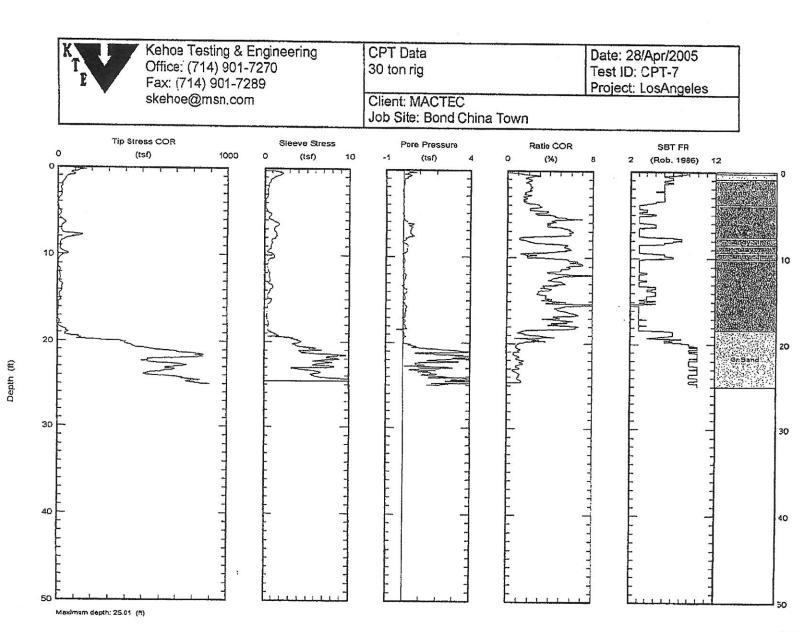
1 ari

TestID CPT-5

Kehoe Testing & Engineering Office: (714) 901-7270 Fax: (714) 901-7289 CPT Data Date: 28/Apr/2005 30 ton rig Test ID: CPT-6 Project: LosAngeles skehoe@msn.com Client: MACTEC Job Site: Bond China Town Tip Stress COR Sleeve Stress Pore Pressure Ratio COR SBT FR 0 (tsf) 1000 С (tsf) 10 -1 (tsf) 0 (%) 4 2 (Rob. 1986) 12 8 0 Sand Mix 10 Sitty Sand Gr Sond 20 30 30 40 50 Maximum depth: 18.61 (ft)

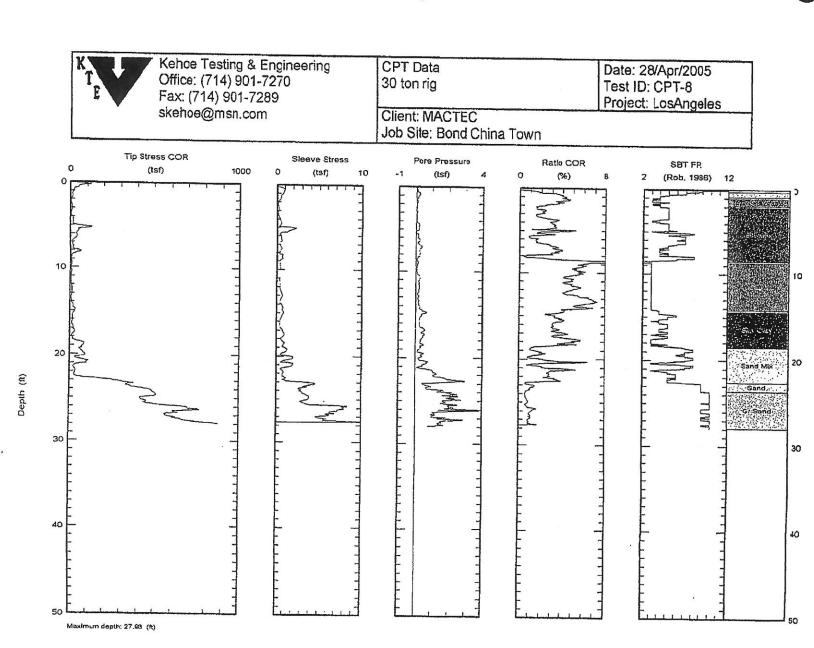
( 11) (;) :10 1) .[') 1.2 .... 1 1:23 . ... 10 (ľ) (ľ) 15

:!']


111) (;) Depth (ft)

Test ID: CPT-8 FEe- 12840504C.ECP

30


40

10 ,



7est 12- CPT-7 FZe: 120A0605C ECP

[ [ ] ]



TestID: CPT-8 File: ZIBADSCIC ECP

115)

1 .....

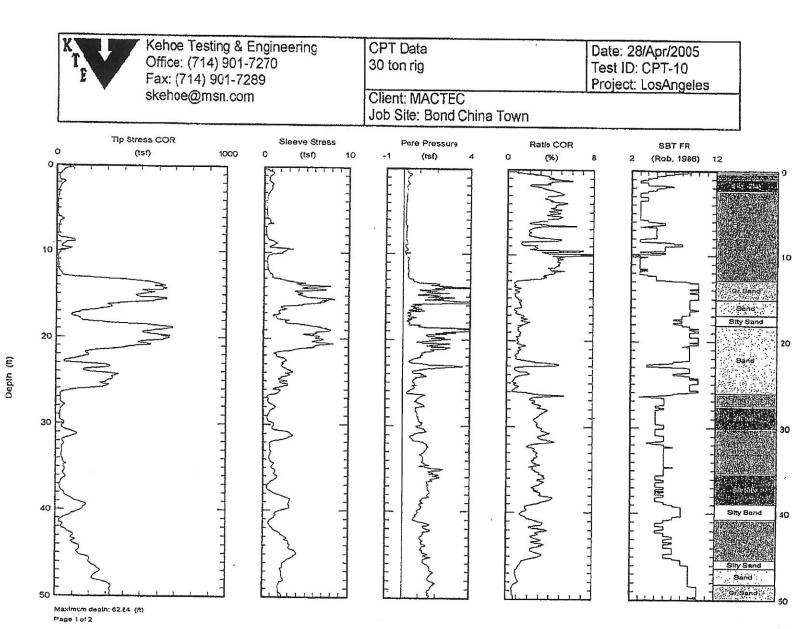
:

Kehoe Testing & Engineering Office: (714) 901-7270 Fax: (714) 901-7289 **CPT** Data Date: 28/Apr/2005 30 ton rig Test ID: CPT-9 Project: LosAngeles skehoe@msn.com Client: MACTEC Job Site: Bond China Town Tip Stress COR Sleeve Stress Pore Pressure Ratio COR SBT FR 0 (tsf) 1000 0 (tsf) 10 (tsf) -1 0 (%) 2 (Rob. 1986) 12 4 8 0 10 Sand www. MUL Sand 7 20 Depth (ft) 30 40 50

Maximum depth: 18.55 (R)

Testij: CPT-9 Fie 228A0808C.ECP

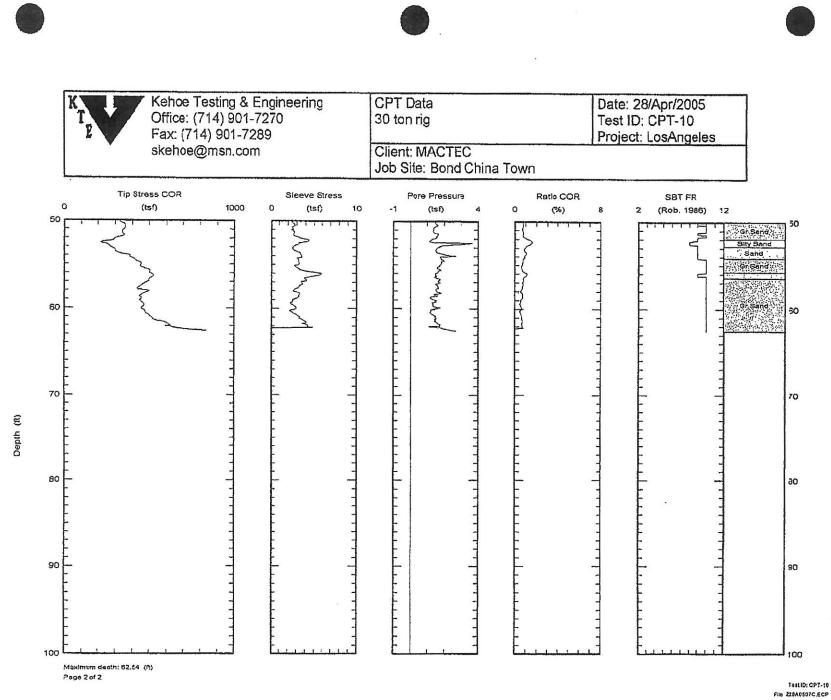
50


10

20

30

40


111



[["]

[...]

Tost ID: CPT-10 File. 228A0807C.2CP





Kehoe Testing & Engineering **CPT** Data Date: 28/Apr/2005 Office: (714) 901-7270 Fax: (714) 901-7289 Test ID: CPT-11 30 ton rig Project: LosAngeles skehoe@msn.com Client: MACTEC Job Site: Bond China Town Tip Stress COR Sleeve Stress Pore Pressure Ratio COR SBT FR 0 (tsf) 1000 0 (tsf) 10 (tsf) 0 (%) -1 4 8 2 (Rob. 1986) 12 0 Sand Mox Carley a ield energy Sity Sand manna 10 5 20 Depth (f) Sity Sand 30 Sand Sand VS Fine Gr 40 Sand Mo VS Fine Gr Gr Band 50

Maximum depth: 70.36 (ft) Page 1 of 2

(...) (...)

(1) (1) (1)

(.) (?)

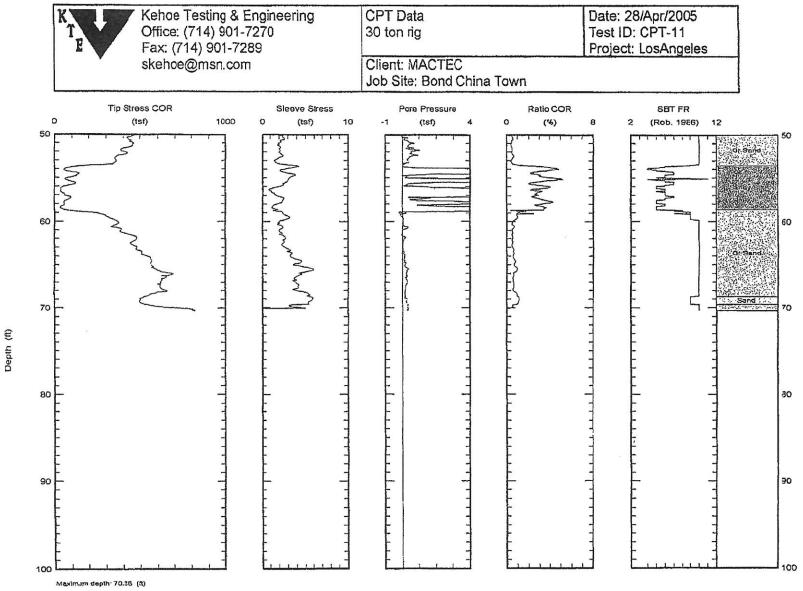
(4) (1)

1111

,45 ,45

:17

13


:1) :11 TeetID: CPT-11 Fte: 22840508C.ECP

10

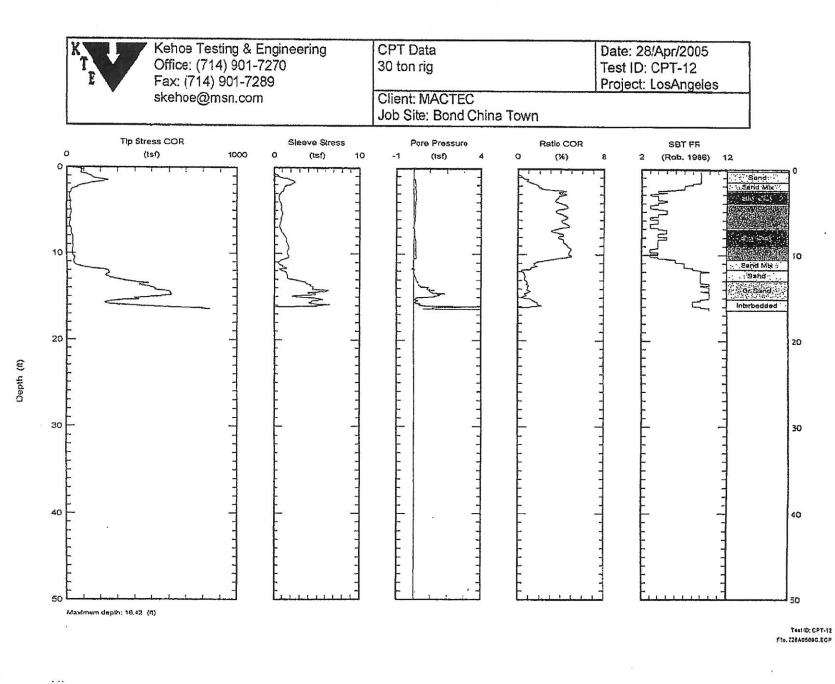
20

30





Page 2 of 2

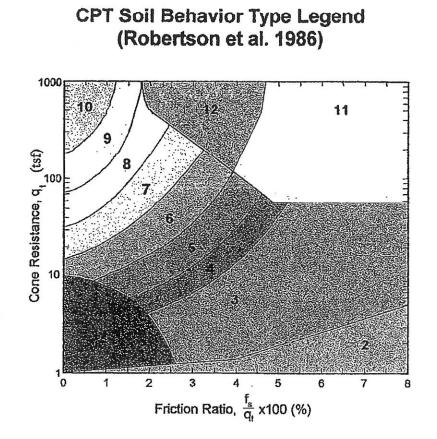

111

15

1)

111

TestID: CPT-11 FUs. 228A08080.ECP




1:) 111 1:2 10 1.2 1) 12 1;) 1 11 1. :10 [1] :!')

17)

i[']

1 = 1 |



Zone	Soil Behavior Type
1	Sensitive, Fine Grained
2	Organic Material
3	Clay
4	Silty Clay to Clay
5	Clayey Silt to Silty Clay (Silt Mix)
6	Sandy Silt to Clayey Silt
7	Silty Sand to Sandy Silt (Sand Mix)
8	Sand to Silty Sand
9	Sand
10	Gravelly Sand to Sand
11 🗌	Very Stiff Fine Grained*
12 📓	Sand to Clayey Sand*
	*Overconsolidated or cemented

	INPU	T FILE: C:	\TEMP\CPT-	4.CSV 1	*******			
	Depth	Qc (avg)	Fs (avg)	Rf	Rf Zone	Spt N	Spt N1	Su
	(feet)	(TSF)	(TSF)	(8)	(zone #)	(blow/ft)	(blow/ft)	(TSF)
	0.500	55.108	0.387	0.703	8	13	20	UNDF
	1.500	83.821	0.701	0.836	8	20	30	UNDF
	2.500	18.815	0.681	3.618	4	12	18	1.244
	3.500	51.036	1.839	3.603	5	24	36	3.388
	4.500	68.291	3.915	5.737	11	65	98	UNDF
	5.500	75.873	4.243	5.592	1.1	73	110	UNDF
	6.500	52.673	1.792	3.402	5	25	38	3.483
	7.500	66.127	3.410	5.157	11	63	95	UNDF
2	8.500	77.443	5.124	6.617	11	74	111	UNDF
	9.500	78.293	5.464	6.975	11	75	109	UNDF
	10.500	106.414	5.453	5.123	11	102	137	UNDF
	11.500	170.392	1.999	1.173	8	41	51	UNDF
	12.500	115.557	1.651	1.429	8	28	33	UNDF
	13.500	141.727	1.846	1.303	8	34	38	UNDF
	14.500	373.192	3.284	0.880	9	71	75	UNDF
	15.500	569.029	4.893	0.860	10	91	91	UNDF
	16.500	856.783	0.000	0.000	10	UNDF	UNDF	UNDF

. . .

. .

I TNP	TT FILE C	:\TEMP\CPT-	5 CSV 1				
Depth (feet)	Qc(avg) (TSF)	Fs (avg) (TSF)	Rf (응)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	Su (TSF)
0.500	77.950	0.387	0.497	8	19	29	UNDF
1.500	81.200	0.680	0.837	8	19	29	UNDF
2.500	17.986	0.986	5.463	3	17	26	1.193
3.500	14.933	0.767	5.117	3	14	21	0.985
4.500	21.525	1.152	5.336	3	21	32	1.420
5.500	19.575	1.118	5.694	3	19	29	1.287
6.500	11.100	0.696	6.258	3	11	17	0.715
7.500	19.042	0.720	3.773	4 3	12	18	1.241
8.500	23.355	1.291	5.515	3	22	33	1.525
9.500	31.500	1.831	5.788	3	30	45	2.069
10.500	18.725	1.388	7.395	3	18	25	1.208
11.500	24.458	1.399	5.703	3	23	30	1,588
12.500	129.869	1.205	0.927	8	31	38	UNDF
13.500	152.377	1.541	1.011	9	29	33	UNDF
14.500	200.492	2.868	1.430	8	48	52	UNDF
15.500	405.700	4.968	1.224	9	78	80	UNDF
16.500	514.143	4.046	0.786	10	82	80	UNDF
17.500	672.917	0.000	0.000	10	UNDF	UNDF	UNDF

INPU	T FILE: C:	TEMP\CPT-	6.CSV  -				
Depth (feet)	Qc(avg) (TSF)	Fs(avg) (TSF)	Rf (%)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	Su (TSF)
0.500	62.791	0.427	0.680	8	15	23	UNDF
1.500	39.636	0.392	0.990	7	13	20	UNDF
2.500	51.221	0.729	1.422	7	16	24	UNDF
3.500	15.062	0.344	2.282	5	7	11	0.990
4.500	12.336	0.451	3.669	4 3	8	12	0.801
5.500	17.683	0.738	1.183	3	17	26	1.154
6.500	13.620	0.473	3.481	4	9	14	0.880
7.500	25.773	0.865	3.353	5	12	18	1.688
8.500	32.682	1.481	4.530	4	21	32	2.145
9.500	34.745	1.399	4.025	4	22	33	2.279
10.500	47.908	1.990	4.150	5	23	32	3.154
11.500	55.936	1.342	2.398	6	21	27	UNDF
12.500	109.283	1.139	1.042	8	26	32	UNDF
13.500	90.208	1.244	1.379	8	22	25	UNDF
14.500	294.407	1.924	0.653	9	56	61	UNDF
15.500	403.171	2.704	0.670	10	64	66	UNDF
16.500	478.677	3.973	0.830	10	76	75	UNDF
17.500	717.873	8.343	1.162	9	138	129	UNDF
18.500	639.142	3.788	0.593	1.0	102	92	UNDF
		2.700			102	22	OWDE

• • •

	INPU	T FILE: C:	TEMP\CPT-	7.CSV				
	Depth	Qc (avg)	Fs(avg)	Rf	Rf Zone	Spt N	Spt N1	Su
	(feet)	(TSF)	(TSF)	(%)	(zone #)	(blow/ft)	(blow/ft)	(TSF)
0								
	0.500	95.125	1.523	1.599	7	30	45	UNDF
	1.500	39.592	0.823	2.078	6	15	23	UNDF
	2,500	23.269	0.453	1.947	6	9	14	UNDF
	3.500	14.362	0.238	1.654	5 3	7	11	0.944
	4.500	5.923	0.169	2.857		6	9	0.377
	5.500	15.275	0.702	4.589	3	1.5	23	0.997
	6.500	33.445	1.482	4.417	4	21	32	2.210
	7.500	60.145	1.425	2.365	6	23	35	UNDF
	8.500	31.542	0.999	3.164	56	15	23	2.071
	9.500	28.757	0.767	2.666	6	11	17	UNDF
	10.500	12.933	0.748	5.786	3	12	17	0.819
	11.500	10.258	0.513	4.996	3 3	10	13	0.638
	12.500	15.592	0.742	4.760		15	18	0.989
	13.500	24.200	0.868	3.582	5 4 3	12	14	1.559
	14.500	17.973	0.611	3.396	4	11	12	1.140
	15.500	11.600	0.618	5.327	3	11	11	0.710
	16.500	6.509	0.361	5.514	3 3	6	6	0.369
	17.500	9.709	0.472	4.855	3	9	8	0.576
	18.500	33.245	0.648	1.950	6 [.] 7	13	12	UNDF
	19.500	140.942	2.791	1.980	7	45	39	UNDF
	20.500	453.914	4.692	1.033	9	87	74	UNDF
	21.500	768.407	6.847	0.890	10	123	102	UNDF
	22.500	617.254	7.075	1.146	9	118	96	UNDF
	23.500	604.379	5.451	0.901	10	97	78	UNDF
	24,500	741.350	5.281	0.712	10	118	93	UNDF
	25.500	894.700	0.000	0.000	10	UNDF	UNDF	UNDF

•

.

INPU Depth	T FILE: C Qc(avg)	:\TEMP\CPT- Fs(avg)	8.CSV   Rf	Rf Zone	Spt N	Spt N1	Su
(feet)	(TSF)	(TSF)	(%)	(zone #)	(blow/ft)	(blow/ft)	(TSF)
0.500	43.583	0.708	1.624	7	14	21	UNDF
1.500	13.593	0.530	3.897	З	13	20	0.901
2.500	9.215	0.186	2.017	5	4	6	0.605
3.500	9.092	0.208	2,284	4	6	9	0.592
4.500	18.400	0.571	3.098	5	9	14	1.210
5.500	62.738	1.176	1.874	7	20	30	UNDF
6.500	29.408	0.582	1.976	6	11	17	UNDF
7.500	18.933	0.531	2.793	5 6	9	14	1.237
8.500	25.531	0.607	2.376	6	10	15	UNDF
9.500	9.300	0.519	5.563	3 3 3	9	14	0.583
10.500	9.277	0.458	4.925	3	9	13	0.577
11.500	9.100	0.448	4.905		9	12	0.563
12.500	12.273	0.623	5.063	3	12	15	0.769
13.500	9.727	0.612	6.260	3	9	10	0.597
14.500	22.318	0.829	3.704	4	14	15	1.433
15.500	19.236	0.689	3.575	1	12	13	1.222
16.500	16.783	0.554	3.287	5	8	8	1.057
17.500	21.555	0.888	4.102	4	14	13	1.373
18.500	49.367	0.870	1.760	7	16	15	UNDF
19.500	70.258	1.074	1.527	7	22	19	UNDF
20.500	74.286	1.622	2.181	7	24	21	UNDF
21.500	33.842	1.097	3.226	5	16	13	2.179
22.500	96.950	1.233	1.268	8	23	19	UNDF
23.500	363.221	3.544	0.975	9	70	57	UNDF
24.500	486.429	3.496	0.718	10	78	62	UNDF
25.500	486.336	4.875	1.002	9	93	73	UNDF
 26.500	646.500	6.661	1.030	9	124	95	UNDF
27.500	686.479	4.098	0.597	10	110	83	UNDF

	Depth	T FILE: C: Qc(avg)	:\TEMP\CPT- Fs (avg)	9.CSV   Rf	Rf Zone	Spt N	Spt N1	Su
0	(feet)	(TSF)	(TSF)	(%)	(zone #)	(blow/ft)	(blow/ft)	(TSF)
	0.500	146.385	0.925	0.632	9	28	42	UNDF
	1.500	24.438	0.723	2.959	5	12	18	1.623
	2.500	15.871	0.575	3.629	4	10	15	1.046
	3.500	18.169	0.692	3.817	4	12	18	1.193
	4.500	22.958	0.834	3.640	4	15	23	1.509
	5.500	27.415	1.082	3.949	4	17	26	1.803
	6.500	16.292	0.680	4.178		16	24	1.058
	7,500	28.558	1.070	3.747	3 5 3 5	14	21	1.873
	8.500	32.146	1.685	5.244	3	31	47	2.107
	9.500	44.258	1.788	4.039	5	21	32	2.911
	10.500	106.115	1.373	1.294	8	25	35	UNDF
	11.500	271.358	1.877	0.692	8 9	52	67	UNDF
	12.500	323.907	2.255	0.696	10	52	63	UNDF
	13.500	188.823	1.826	0.967	9	36	41	UNDF
	14.500	420.800	5.135	1.220	9	81	88	UNDF
	15.500	575.547	7.061	1.227	9	110	113	UNDF
	16.500	642.221	7.178	1.117	9	123	120	UNDF
	17.500	624.686	6.796	1.088	9	120	112	UNDF
	18.500	637.600	3.142	0.493	10	102	91	UNDF

. ....

. . .

. . . . . . . . .

.....

..

		JT FILE: C:						
	Depth (feet)	Qc (avg) (TSF)	Fs (avg) (TSF)	Rf (%)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	Su (TSF)
	0.500	42.500	0.817	1.920	6	16	24	UNDF
	1.500	24.669	0.827	3.343	5	12	18	1.643
	2.500	25.150	0.992	3.936	4	16	24	1.669
	3.500	13.300	0.532	3.990	3	13	20	0.874
	4.500	9.208	0.411	4.449	3.	9	14	0.597
	5.500	9.825	0.418	4.240	3	9	14	0.635
	6.500	25.700	0.742	2.884	5 5	12	18	1.688
	7.500	13.682	0.284	2.069	5	7	11	0.883
	8.500	48.783	0.887	1.817	7	16	24	UNDF
	9.500	48.115	1.906	3.959	5	23	35	3.171
	10.500	14.833	0.807	5.410	3	14	20	0.952
	11.500	12.958	0.577	4.431	3	12 .	16	0.822
	12.500	34.933	0.996	2.846	6	13	16	UNDF
	13.500	485.654	4.171	0.858	10	78	90	UNDF
	14.500	577.886	4.946	0.855	10	92	100	UNDF
	15.500	532.636	6.414	1.203	9	102	105	UNDF
	16.500	282.614	2.650	0.937	9	54	53	UNDF
	17.500	117.477	1.872	1,593	8	28	26	UNDF
	18.500	452.107	5.149	1.138	9 9 9 9	87	78	UNDF
	19.500	583.333	6.328	1.084	9	112	96	UNDF
	20.500	554.992	6.612	1.191	9	106	89	UNDF
	21.500	282.479	2.994	1.059	9	54	45	UNDF
	22.500	113.483	2.342	2.061	7	36	29	UNDF
	23.500	237.642	2.742	1.152	9	46	37	UNDF
	24.500	320.127	2.501	0.781	9 9	61	48	UNDF
-	25.500	281.875	2.267	0.804	9	54	42	UNDF
	26.500	56.391	1.371	2.424	6	22	17	UNDF
	27.500	34.282	0.978	2.834	6	13	10	UNDF
	28.500	29.730	0.999	3.341	56	14	10	1.875
	29.500	31.245	0.859	2.733	5	12	9	UNDF
	30.500	53.070 81.100	1.848 2.631	3.468 3.239	6	26 31	18	3.426
	31.500 32.500	39.800	0.918	2.290	6	15	22 10	UNDF UNDF
	33.500	35.008	0.929	2.637	6	13	9	UNDF
	34.500	45.386	1.149	2.516	6	17	11	UNDF
	35.500	47.973	1.459	3.018	6	19	13	UNDF
	36.500	38.525	1.185	3.050	5	19	12	2.438
	37.500	28.800	0.810	2.783	6	11	7	UNDF
	38.500	75,245	2.725	3.609	5	36	.23	4.873
	39.500	164.000	3.018	1.838	8	39	24	UNDF
	40.500	95.608	1.550	1.619	7	31.	19	UNDF
	41.499	31.410	0.894	2.823	6	12	7	UNDF
	42.499	71.150	1.887	2.642	6	27	16	UNDF
	43.499	98,955	2.915	2.939	6	38	23	UNDF
	44.499	132.182	3.505	2.648	7	.42	25	UNDF
	45.499	181.510	3.172	1.745	8	44	26	UNDF
	46.499	228.527	2.317	1.013	9	44	25	UNDF
	47.499	235.836	2.324	0,984	9	45	26	UNDF
	48.499	295.373	2.057	0.696	9	57	32	UNDF
	49.499	321.218	2.107	0.655	10	51	28	UNDF



•

INPU Depth (feet)	T FILB: C: Qc(avg) (TSF)	\TEMP\CPT- Fs(avg) (TSF)	10.CSV Rf (%)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	Su (TSF)
50.499	347.509	2.600	0.748	10	56	31	UNDF
51.499	341.818	2.775	0.811	9	66	36	UNDF
52.499	261.408	3.446	1.316	9	50	27	UNDF
53.499	319.027	3.082	0.965	9	61	32	UNDF
54.499	422.750	3.265	0.772	10	68	36	UNDF
55.499	478.671	3.621	0.756	10	76	39	UNDF
56.499	510.843	4.539	0.888	10	82	42	UNDF
57.499	456.985	3.271	0.715	10	73	37	UNDF
58,499	467.362	3.079	0.658	10	75	38	UNDF
59.499	460.546	2.585	0.561	10	74	37	UNDF
60.499	482.569	2.755	0.571	10	77	39	UNDF
61.499	564.638	3.812	0.675	10	90	45	UNDF
62.499	691.037	1.650	0.239	10	110	55	UNDF

. . . . . . .

### 1010976201495605

. . . . . . . .

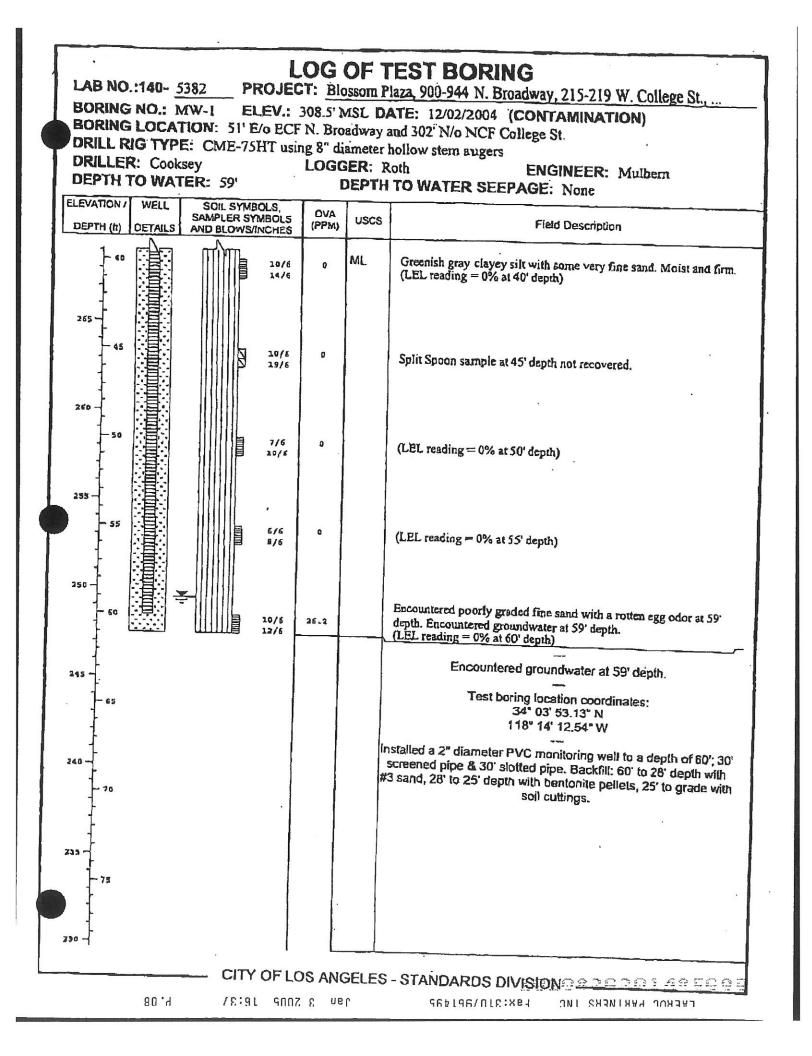


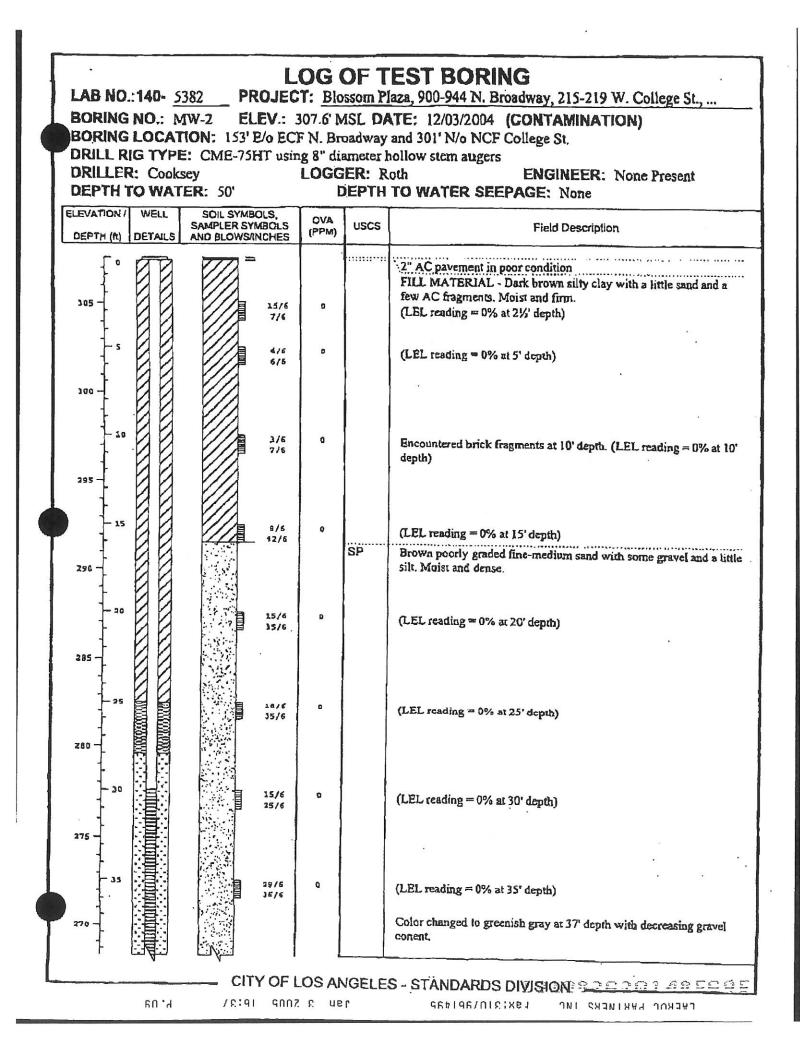
		·\TEMP\CPT-					
Depth (feet)	Qc(avg) (TSF)	Fs(avg) (TSF)	Rf (%)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	Su (TSF)
0.500	41.325	0.632	1.528	7	13	20	UNDF
1.500	27.254	0.439	1.612	6	10	15	UNDF
2.500	9.100	0.343	3.769	3	9	14	0.597
3.500	11.867	0.336	2.830	4	8	12	0.777
4.500	16.509	0.588	3.567	4	11	17	1.081
5.500	78.591	1.037	1.320	8	19	29	UNDF
6.500	75.191	0.966	1.285	8	18	27	UNDF
7.500	47.345	0.756	1.597	7	15	23	UNDF
8.500	16.627	0.553	3.319	4 5 3	11	17	1.076
9.500	20.818	0.621	2.983	5	10	15	1.349
10.500	15.209	0.667	4.379		15	21	0.973
11.500	28.164	0.725	2.571	6	11	14	UNDF
12.500	27.909	0.835	2.991	5 4	13	16	1.811
13.500	15.218	0.597	3.885		10	12	0.970
14.500	9.964	0.514	5.086	3	10	11	0.614
15.500	26.564	0.903	3.383	5	13	14	1.716
16.500	16.218	0.602	3.715	4	10	10	1.013
17.500	12.136	0.447	3.674	4	8	8	0.740
18.500	34.458 31.100	0.594	1.721	6	13	12	UNDF
19.500 20.500	23.355	1.081 0.675	3.466 2.885	5 5	15 11	13	1.999
21.500	28.591	0.630	2.885	6	11	9 9	1.477
22,500	91.025	0.945	1.037	8	22	18	UNDF UNDF
23.500	140.931	1.579	1.120	8	34	27	UNDF
24.500	72.673	0.969	1.333	7	23	18	UNDF
25.500	128.483	1.755	1.366	8	31	24	UNDF
26.500	122.082	1.645	1.348	8	29	22	UNDF
27.500	114.027	1.314	1.152	8	27	20	UNDF
28.500	367.731	3.333	0.906	9	70	52	UNDF
29.500	416.000	4.413	1.060	9	80	58	UNDF
30.500	428.273	4.895	1.142	9 9	82	59	UNDF
31.500	341.942	2.900	0.848	9	66	47	UNDF
32.500	251.883	2.653	1.053	9	48	33	UNDF
33.500	115.927	2.622	2.257	7	37	25	UNDF
34.500	215.317	3.133	1.454	8	52	35	UNDF
35.500	72.564	1.868	2.565	6	28	19	UNDF
36.500	48.909 47.667	1.203	2.442	6	19	12	UNDF
37.500 38.500	44.680	1.168 1.833	2.430 4.054	6 5	18 22	12 14	UNDF
39.500	84.436	3.806	4.461	11	82	52	2.856 UNDF
40.500	77.355	3.727	4.790	11	75	47	UNDF
41.499	116.036	4.050	3.474	6	45	28	UNDF
42.499	209.292	5.768	2.754	7	67	41	UNDF
43.499	178.517	4.965	2.782	7	57	34	UNDF
44.499	92.911	4.457	4.796	11	89	53	UNDF
45.499	79.360	3.190	4.017	5	38	22	5.107
46.499	149.264	4.557	3.051	6	57	33	UNDF
47.499	379.308	3.346	0.882	9	73	42	UNDF
48.499	304.164	2.170	0.713	9	58	33	UNDF
49.499	425.018	2.950	0.694	10	68	38	UNDF

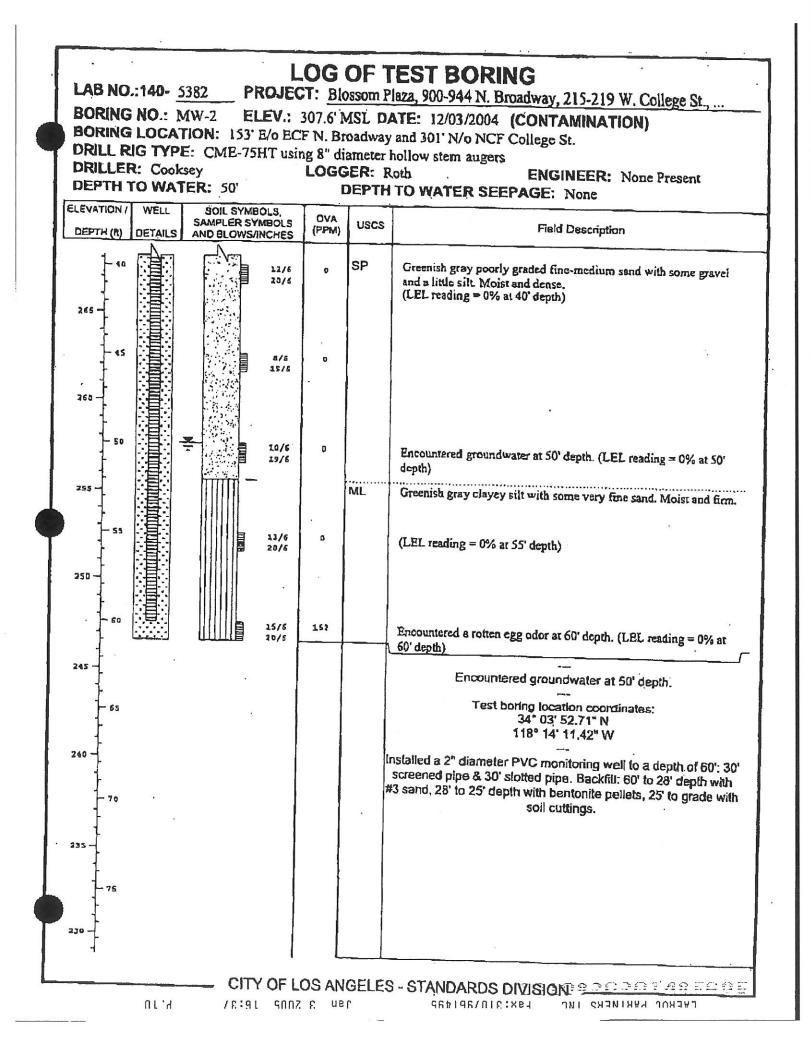
.

••••••••

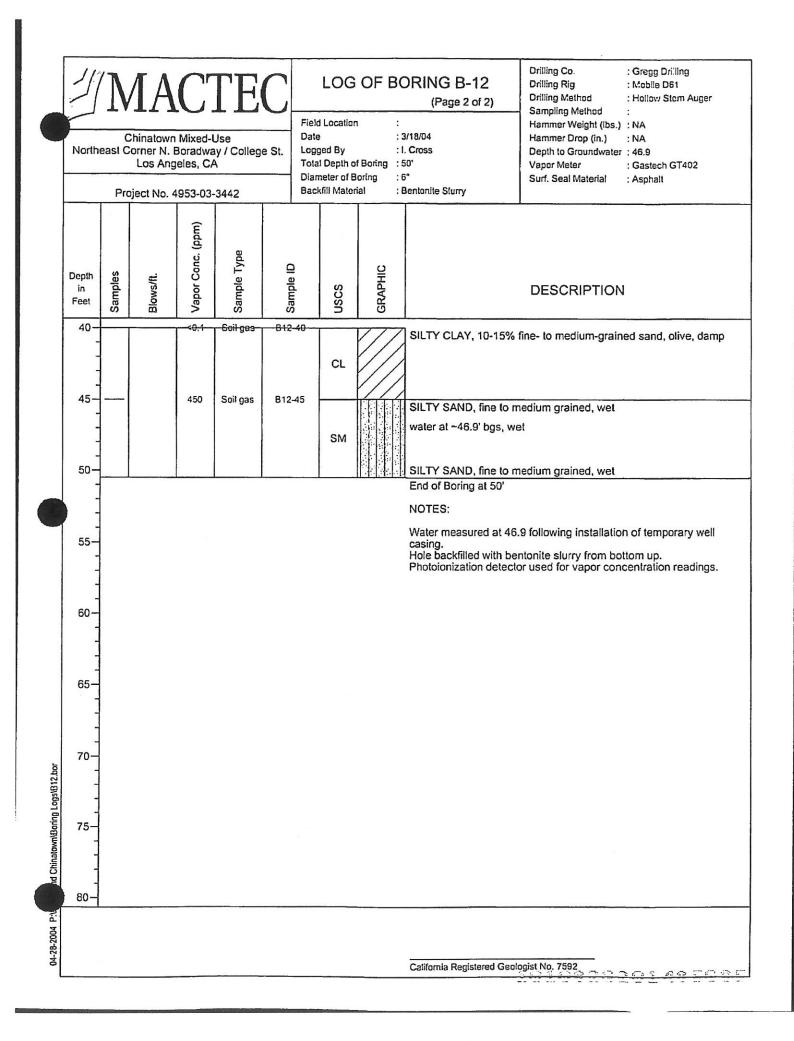
ti nati nati

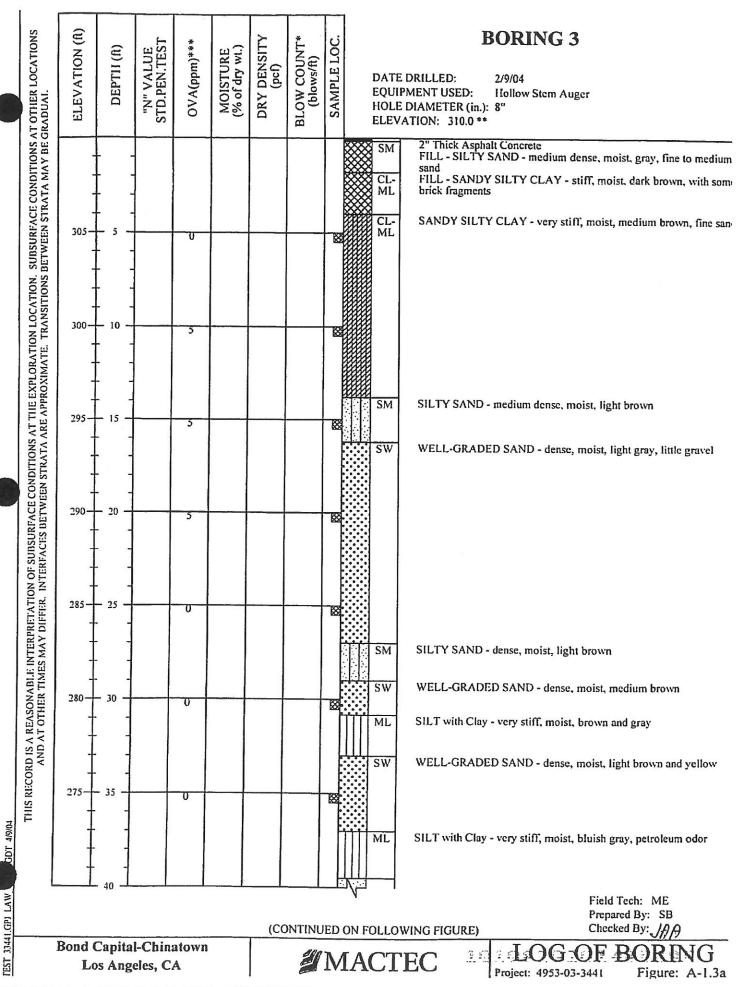

1	
6	
1	


	INPU Depth (feet)	f FILE: C: Qc(avg) (TSF)	\TEMP\CPT- Fs (avg) (TSF)	11.CSV  - Rf (%)	Rf Zone (zone #)	Spt N (blow/ft)	Spt N1 (blow/ft)	Su (TSF)
•	50.499	444.082	2.312	0.521	10	71	39	UNDF
	51.499	422.142	2.049	0.485	10	67	36	UNDF
	52.499	381.233	2.128	0.558	10	61	33	UNDF
	53.499	247.917	2.664	1.074	9	48	25	UNDF
	54.499	98.292	3.009	3.016	6	38	20	UNDF
	55.499	86.983	2.710	3.094	6 6	34	1.8	UNDF
	56.499	41.850	1.275	2.927	6	17	9	UNDF
	57.499	72.164	2.294	3.141	6 6 9	28	14	UNDF
	58.499	69.945	1.622	2.285	6	27	14	UNDF
	59.499	310.655	2.748	0.885	9	60	30	UNDF
	60.499	365.275	2.174	0.595	10	58	29	UNDF
	61.499	436.492	2.386	0.547	10	70	35	UNDF
	62.499	465.961	2.497	0.536	10	74	37	UNDF
	63.499	502.983	3.212	0.639	10	80	40	UNDF
	64.499	561.517	4.070	0.725	10	90	45	UNDF
	65.499	600.371	4.973	0.828	10	96	48	UNDF
	66.499	641.977	3.975	0.619	10	102	51	UNDF
	67.499	618,450	4.034	0.652	10	99	50	UNDF
	68.499	564.650	5.261	0.932	10	90	45	UNDF
	69.499	538.631	4.732	0.878	10	86	43	UNDF
	70.499	791.233	0.832	0.105	10	126	63	UNDF

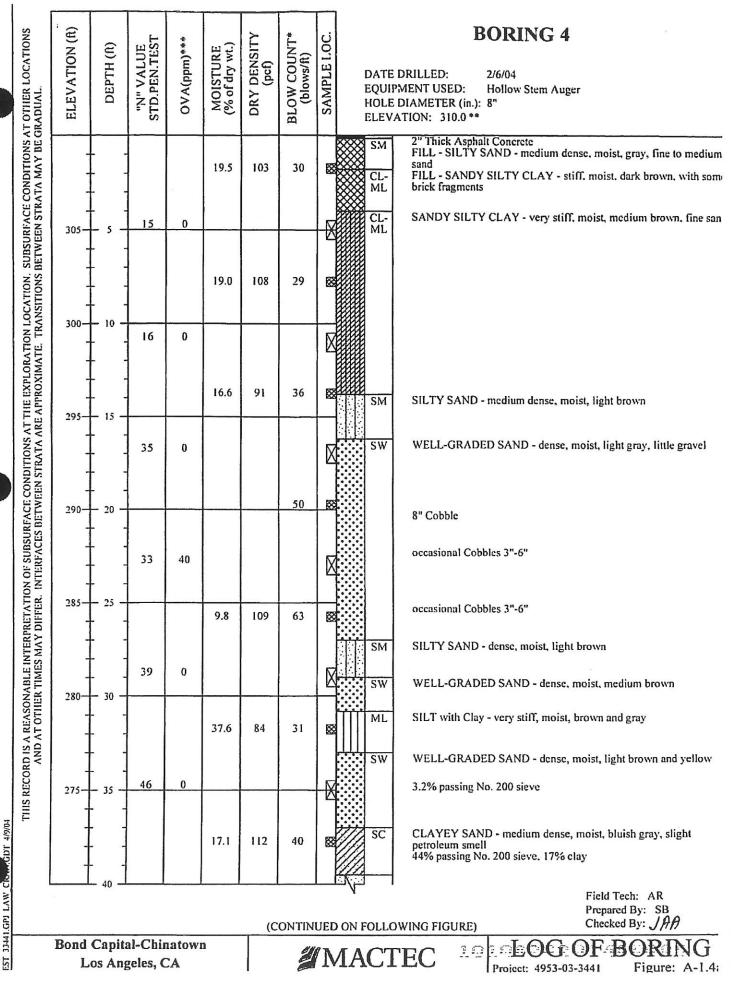

INPU	T FILE: C:	TEMP\CPT-	12.CSV				
Depth	Qc (avg)	Fs (avg)	Rf	Rf Zone	Spt N	Spt N1	Su
(feet)	(TSF)	(TSF)	(옹)	(zone #)	(blow/ft)	(blow/ft)	(TSF)
0.500	90.175	0.116	0.128	9	17	26	UNDF
1.500	178.146	1.845	1.035	9	34	51	UNDF
2.500	47.962	1.258	2.621	6	18	27	UNDF
3.500	18.714	0.706	3.770	4	12	18	1.234
4.500	22.021	0.914	4.146	4	14	21	1.450
5.500	24.185	1.002	4.139	4	15	23	1.591
6.500	18.631	0.812	4.356	3	18	27	1.215
7.500	27.469	1.012	3.682	5	13	20	1.800
8.500	35.608	1.513	4.247	4	23	35	2.340
9.500	35.179	1.694	4.811	3	34	51	2.307
10.500	40.762	1.365	3.346	5	20	28	2.675
11.500	103.885	0.939	0.904	8	25	32	UNDF
12.500	247.817	1.557	0.628	9	47	57	UNDF
13.500	426.908	3.765	0.882	9	82	94	UNDF
14.500	570.854	4.471	0.783	10	91	98	UNDF
15.500	334.564	4.616	1.380	9	64	66	UNDF
16.500	685.200	0.842	0.123	10	109	106	UNDF


×

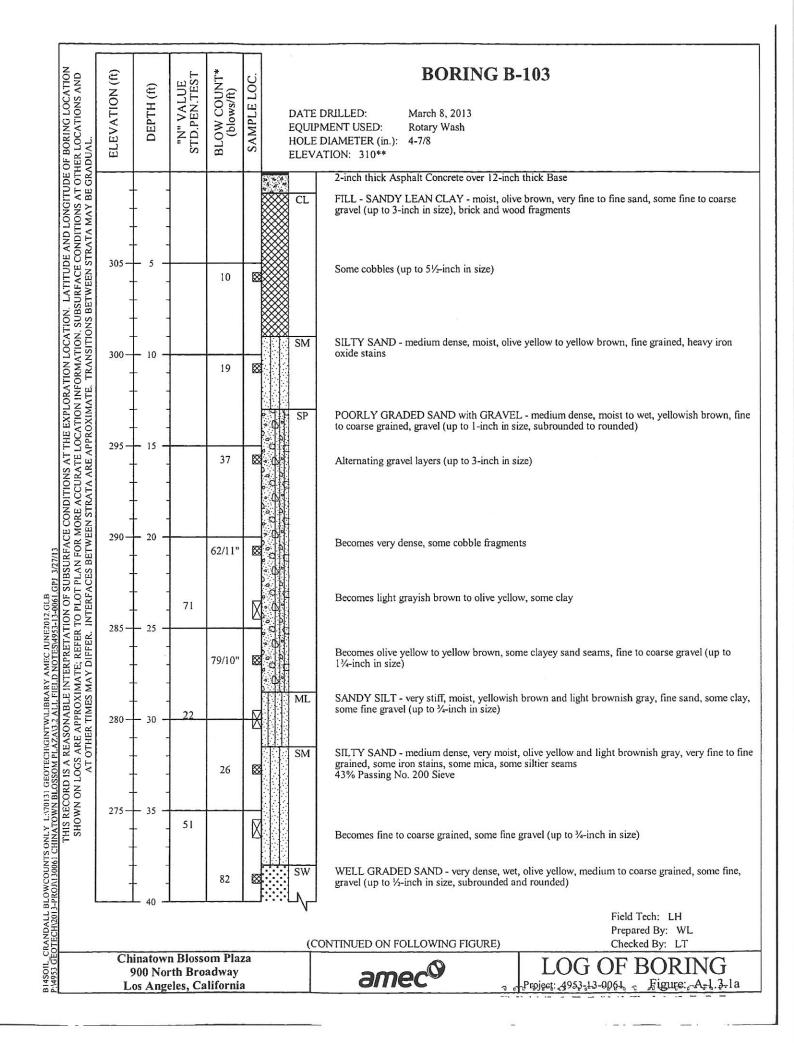

•

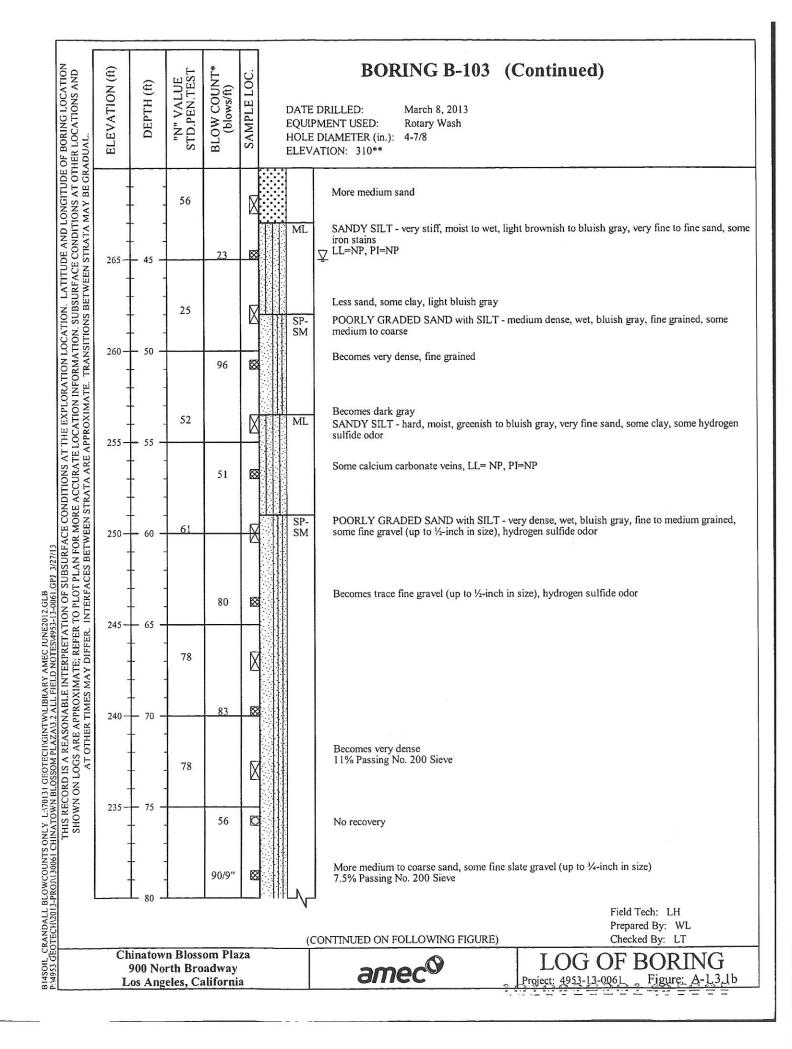


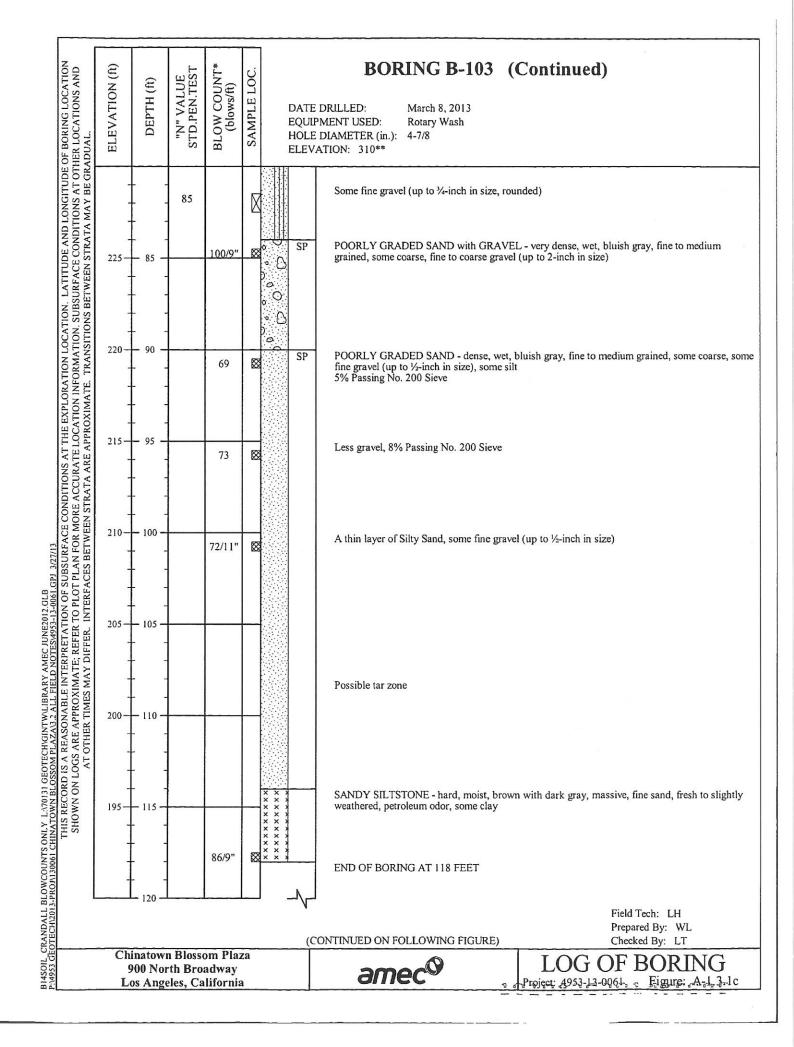






	N OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS INTERFACES BETWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.	ELEVATION (f)	DEPTH (ft)	"N" VALUE STD.PEN.TEST	OVA(ppm)***	MOISTURE (% of dry wt.)	DRY DENSITY (pcf)	BLOW COUNT* (blows/ft)	SAMPLE LOC.		equi Holi	PM E D	BORING 3 (Continued) RILLED: 2/9/04 IENT USED: Hollow Stem Auger IAMETER (in.): 8" TON: 310.0 **
	CE CONDITIONS A STRATA MAY BE G				200				83		ЪР		POORLY GRADED SAND - medium dense, moist, light brown hydro carbon odor
	ATION. SUBSURFA	265 -	- 45 - 		80				188			Ā	hydro carbon odor
	EXPLORATION LOC ROXIMATE. TRANS	260- - -	- 50 -  		-20				82			-	hydro carbon odor End of Boring at 51'. NOTES: Water measured at 49' after auger removal. Hole backfilled with cement/bentonite grout from bottom up.
	VDITIONS AT THE E STRATA ARE APPR	- 255	  					-					*** Photo Ionization Detector used for OVA readings.
	F SUBSURFACE CON RFACES BETWEEN	250	- 60 - 										·
	VTERPRETATION OI MAY DIFFER. INTE	245	- 65 -										
	THIS RECORD IS A REASONABLE INTERPRETATIO AND AT OTHER TIMES MAY DIFFER.	240	 - 70 										
1:0/6	THIS RECORD IS ANI	235-	 - 75 - 										
GPJ LAW C IDT 4/9/04		+	- 80 -										Field Tech: ME Prepared By: SB Checked By: //A
EST 33441.GPJ LAW			375	al-Chin geles, C		1		2	'N	⁄IA	C	[]	EC <u>1 LOG OF BORING</u> Proiect: 4953-03-3441 Figure: A-1.3b



AND AT OTHER TIMES MAY DIFFER INTERFACES BETWEEN STRATA ARE APPROXIMATE TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.		DEPTH (îì)	"N" VALUE STD.PEN.TEST	OVA(ppm)***	MOISTURE (% of dry wt.)	DRY DENSITY (pcf)	BLOW COUNT* (blows/ft)	SAMPLE LOC.	EC H(	BORING 4 (Continued) DATE DRILLED: 2/6/04 EQUIPMENT USED: Hollow Stem Auger HOLE DIAMETER (in.): 8" ELEVATION: 310.0 **
A MAY BE G	+		20	40				X	N	SP POORLY GRADED SAND - medium dense, moist, light brow 38% passing No. 200 sieve
ZIATA IN 262		- 45 -			9,7	121	75	8		40% passing No. 200 sieve
NS BETWE		-	32	199						very moist
VNSITIO	Ţ	-			10.3	121	50			SW ∑ WELL-GRADED SAND with Silt - dense, moist, bluish gray 12% passing No. 200 sieve
260 260	) <del> </del>  -	50 -								SP POORLY GRADED SAND - very dense, moist, bluish gray
VINIA	+	-	50/6"	50						
BAPPE See	;‡	- 55 —						_		
ATA AR	ļ	-	-				50			
WEEN STR		-	22	25				Ø		ML SILT with Sand - very stiff, moist, grayish blue, with some Cla 84% passing No. 200 sieve, 19% clay
250 ALIER SE	)†	60 <del>-</del>					52	E		grayish green
TERFAC		-	-				52			
N 24	;+ ;-	65 -	33	25				Ð		
AY DIFF	+	-								End of Boring at 65½'. NOTES:
MES M	Ì									Water measured at 48.6' 10 minutes after auger removal. Hole backfilled with cement/bentonite grout from bottom up.
12 240	0+	70 -						+		* Number of blows required to drive Crandall sampler12 inche using a 140 pound hammer falling 30 inches.
AT OT			-							*** Photo Ionization Detector used for OVA readings.
ANE	+									
23:	5+	· 75 -					<u> </u>	┢	-	
	ł									
	Ŧ		-							
<b></b>	ا	· 80 –	-1			3	<u></u>			ו Field Tech: AR Prepared By: SB Checked By: אָלָא
Bor			al-Chingeles, 0		'n		and a state	¶ ľ	MA	CTEC LOG OF BORIN







(IJ) N	(t)	UE TEST	UNT*	-OC.	BORING B-103 (Continued)
ELEVATION (ft)	DEPTH (ft)	"N" VALUE STD.PEN.TEST	BLOW COUNT* (blows/ft)	SAMPLE LOC.	DATE DRILLED: March 8, 2013 EQUIPMENT USED: Rotary Wash HOLE DIAMETER (in.): 4-7/8 ELEVATION: 310**
				++	NOTES:
		-			Hand augered upper 5 feet due to utilities. Boring bailed to 48 feet after completion of drilling. Groundwater was measured at 45 feet below ground surface on 3/11/13. Borehole was backfille with cement grout and patched with asphalt.
185-	- 125 -				"N" Value Standard Penetration Test: Number of blows required to drive SPT sampler 18 inche using 140 pound automatic hammer falling 30 inches
					* Number of blows required to drive Crandall Sampler 12 inches using 140 pound hammer fall 30 inches
			8		** Approximate elevations are based on ALTA/ACSM Land Survey Title prepared by Mollenhauer Group, dated January 31, 2003.
180-	- 130 -				NP: Non-plastic
3	+ -				
		]			
175 -	- 135 -				
		-			
	ļ .	-			
170-	- 140 - -	-			
2		-			
165-	- 145 -	-			
	+ .	-			
160-	- 150 -			$\left  \right $	
3		-			
i.					
155 -	- 155 -			$\left  \cdot \right $	
	‡ .				
2	+ ·	-			
	L ₁₆₀ -	]			
					Field Tech: LH Prepared By: WL Checked By: LT
		n Bloss rth Bro		za	
		eles, Ca		a	anec ^Q LOG OF BORING